
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

412-268-5090

W911NF-09-1-0273

56390-CS.313

Technical Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

The fundamental premise behind Moving Target Defense (MTD) is to create a dynamic and shifting system that is
more difficult to attack than a static system because a constantly changing attack surface at least reduces the chance
of an attacker finding and exploiting the weakness. However, MTD approaches are typically chosen without regard
to other qualities of the system, such as performance or cost. This

report explores the use of self-adaptive systems, in particular those based on the architecture of the running system.
A systems software architecture can be used to trade off different quality dimensions of the system. In particular,

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

Approved for public release; distribution is unlimited.

Architecture-Based Self-Adaptation for Moving Target Defense

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Moving Target Defense, Self-adaptation, Software Architecture,Rainbow

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Pradeep Khosla

Bradley Schmerl , Javier Cámara, Gabriel A. Moreno, David Garlan,
Andrew Mellinger

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213 -3815

ABSTRACT

Architecture-Based Self-Adaptation for Moving Target Defense

Report Title

The fundamental premise behind Moving Target Defense (MTD) is to create a dynamic and shifting system that is
more difficult to attack than a static system because a constantly changing attack surface at least reduces the chance
of an attacker finding and exploiting the weakness. However, MTD approaches are typically chosen without regard
to other qualities of the system, such as performance or cost. This

report explores the use of self-adaptive systems, in particular those based on the architecture of the running system. A
systems software architecture can be used to trade off different quality dimensions of the system. In particular, this
report describes the first steps in reasoning formally about MTD approaches, and elevating this reasoning to an
architectural level, along three thrusts: (1) creating an initial catalog of MTD tactics that can be used at the
architectural level, along with the impacts on security and other quality concerns, (2) using this information to inform
proactive self-adaptation that uses predictions of tactic duration to improve the self-adaptation and (3) using
stochastic multiplayer games to verify the the behavior of a variety of MTD scenarios, from uninformed to
predictive-reactive. This work is applied in the context of the Rainbow self-adaptive framework.

Architecture-Based Self-Adaptation for
Moving Target Defense

Bradley Schmerl∗ Javier Cámara∗
Gabriel A. Moreno∗† David Garlan∗

Andrew Mellinger†

August 2014
CMU-ISR-14-109

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Institute for Software Research, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA, USA
†Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA

This work was supported in part by awards W911NF-09-1-0273 and W911NF-13-1-0154 from the

Army Research Office, N000141310401 from the Office of Naval Research, and the National Security

Agency. This material was also based in part upon work funded and supported by the Department

of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation

of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the United States Department of Defense or

other funding bodies.

Keywords: Moving Target Defense, Self-adaptation, Software Architecture,
Rainbow

Abstract

The fundamental premise behind Moving Target Defense (MTD) is to create a dy-
namic and shifting system that is more difficult to attack than a static system because
a constantly changing attack surface at least reduces the chance of an attacker find-
ing and exploiting the weakness. However, MTD approaches are typically chosen
without regard to other qualities of the system, such as performance or cost. This
report explores the use of self-adaptive systems, in particular those based on the
architecture of the running system. A systems software architecture can be used
to trade off different quality dimensions of the system. In particular, this report
describes the first steps in reasoning formally about MTD approaches, and elevating
this reasoning to an architectural level, along three thrusts: (1) creating an initial
catalog of MTD tactics that can be used at the architectural level, along with the
impacts on security and other quality concerns, (2) using this information to inform
proactive self-adaptation that uses predictions of tactic duration to improve the self-
adaptation, and (3) using stochastic multiplayer games to verify the the behavior of
a variety of MTD scenarios, from uninformed to predictive-reactive. This work is
applied in the context of the Rainbow self-adaptive framework.

Contents
1 Introduction 1

2 Background and Related Work 4
2.1 Rainbow . 4
2.2 Moving Target Research . 6

3 Moving Target Tactics 7
3.1 Example system: Znn . 7

3.1.1 Example Tactics . 7
3.1.2 Example Strategies . 9

3.2 Security Indicators . 15
3.3 Moving Target Tactics . 16

3.3.1 Deciding the Impact of MTD Tactics 17

4 Proactive Approaches 19
4.1 Proactive Self-Adaptation . 19

4.1.1 Latency-Aware Proactive Adaptation 21
4.1.2 Algorithm . 21

4.2 Simulation . 24
4.2.1 Results . 26

4.3 Proactive Self-Adaptation for Moving Target 28

5 Multiplayer Games for Moving Target Defense 31
5.1 Stochastic Game Analysis for Proactive Self-Adaptation 32

5.1.1 SMG Model . 33
5.1.2 Analysis . 38
5.1.3 Latency-aware Adaptation . 38
5.1.4 Non-latency-aware Adaptation 39
5.1.5 Results . 40

5.2 Stochastic Game Analysis for Moving Target 41
5.2.1 SMG Model . 43
5.2.2 Results . 49

6 Conclusions 51

1 Introduction
The fundamental premise behind Moving Target Defense (MTD) is to create a dy-
namic and shifting system, which is more difficult to attack than a static system. To
be considered an MTD system, a system needs to shift the different vectors along
which is could potentially be attacked. Such a collection of vectors is often termed
an attack surface, and changing the surface in different ways as the system runs
makes an attack more difficult because the surface is not fixed. The main motivation
behind an MTD system is to significantly increase the cost to adversaries attack-
ing or operating within it, while avoiding creating a higher cost to the defender.
MTD has often been equated with artificial diversity or the ability to provide a
rapidly-changing defender-controlled attack surface. The desire to create this kind
of dynamic system is motivated by current cost asymmetries between attackers and
defenders in which a defender strives for homogeneity to reduce management cost
while an attacker benefits from homogeneity and static systems for executing their
kill chain of reconnaissance, weaponization, and execution. Many existing systems
remain static in terms of address, accounts, configuration, and installations over long
periods of time because uptime in modern systems is often a crucial requirement.
However, remaining static for long periods of time means that attackers have longer
to reconnoiter vulnerabilities and construct attacks against them, and so an extended
uptime in many cases is a detriment to security. Assuming that perfect security is
unattainable, a constantly changing attack surface at least reduces the chance of an
attacker finding and exploiting the weakness.

Because of MTD’s promise, research in this area has recently become more active.
This research can be categorized along three perspectives.

1. Level of Abstraction – MTD approaches work at the lowest runtime level on the
host up through the enterprise level movements of networks. Some approaches
even introduce changes to policy or organizational process. A large percentage
of existing approaches, however, work at the network or infrastructure level.

2. Complexity of planning – Within the spectrum of planning complexity, the
approach can be purely random or utilize sophisticated models of systems,
defenders, or adversaries.

3. Awareness of the system – Each approach can vary the level of data it in-
gests and can function in an un-informed, informed, or even predictive fashion.
Within this axis one can find MTD approaches using randomized behavior at
the host level to highly orchestrated, highly sensed approaches at the enterprise
level.

1

Previous research at ISR has considered self-adapting software architectures and
their application to the self-protection of systems [YMS+13, SCG+14]. Self-protecting
systems apply specific strategies to increase the complexity of the system, decrease
the potential attack surface, or aid in the detection of attacks. In terms of MTD,
self-adapting systems apply approaches at the architectural or enterprise level, mean-
ing that security can be reasoned about in the context of broader business concerns.
The research conducted here demonstrates the impacts of raising the awareness of
a self-protecting systems from working in response to existing stimulus (reactive) to
reacting to potential perceived threats based on predictions about the environment
(proactive).

In complex systems we need to evaluate the overall quality of the system as it
functions in its environment relative to the goals of the systems. We call this overall
quality the utility of the system and it encompasses all stakeholder-relevant aspects
including performance, availability, usability, and security (as well as others). It is
this aggregate utility that a self-adapting system needs to maintain, instead of just
an individual aspect such as performance. MTD approaches are intended to raise
the security of the system. When increasing security the MTD approaches require
more resources and therefore impact other qualities of the system, such as cost or
performance. A mature self-protecting system will need to apply other changes to
the system in addition to a moving target approach in order to maintain the overall
system utility. In addition, individual MTD approaches may increase security as
measured via one indicator while decreasing it along another. For example, intro-
ducing probes to improve the detection of attacks could increase the attack surface
that could be used by an attacker. For a practical system it becomes necessary to
compose MTD approaches and other self-adapting, non-MTD, techniques into en-
sembles to achieve a desired aggregate system utility. To achieve this it is important
to model the interactions between approaches within these ensembles and their in-
cremental effects on the system as they are deployed. This modeling is necessary to
be able to properly choose individual approaches and ensembles, and to decide when
to schedule the changes that comprise a planned adaptation. In prior work with
different quality attributes such as performance, reliability, cost, and service fidelity,
using architectural models of the system being adapted has proven to facilitate this
reasoning [Che08, GCH+04, CGS06, CCdL+13]. We hypothesize that this approach
will also work for security in general and MTD in particular. However, unlike other
quality attributes, to reason about security requires us not only to cast MTD tactics
in terms of the architecture and impact on system utility, but it is also necessary to
consider how to use prediction to prevent rather than react to changes, and to reason
about antagonistic environments to determine the best strategies for counteracting

2

attacks.
This report describes the first steps in reasoning formally about MTD approaches,

and elevating this reasoning to an architectural level. These first steps comprise three
initial investigations into the following areas:

1. Cataloging a sample of tactics that can be applied at an architectural level
for MTD and their relative impacts with security concerns and other business
objectives. The main benefit of reasoning at the architectural level is that
moving target tactics can be chosen by self-adaptive systems based on their
impact on specific security measures and other quality attribute measures. One
fundamental requirement for this is a set of quantifiable security indicators (in
addition to measures of other qualities) that can be used to reason about the
system utility. Our investigations show that measurable security indicators are
beginning to emerge, and can be used at the architectural level to help to decide
what and when MTD tactics could be used. This is discussed in Chapter 3.

2. Current approaches to using architecture-based self-protection are reactive.
Using knowledge of impacts described in Chapter 3 we can inform proactive
moving target adaptation, rather than just using the tactics reactively. This
is important because security defenses in most cases should be preventative
rather than reactive. In Chapter 4, we describe work that was carried out in
the context of performance to show how considering one form of prediction,
based on how long tactics take execute in the system, can be used to improve
self-adaptation and describe how this can be applied to moving target. We also
describe how prior work could be used to push the prediction horizon further
into the future.

3. In order to gain the benefits of prediction, it is necessary to have some knowl-
edge of what strategies the environment might use against a system. To this
end, we have done some initial probabilistic modeling of self-adaptive systems,
and used stochastic multiplayer games to verify the behavior of different MTD
scenarios: uninformed, reactive, and predictive-reactive. This is described in
Chapter 5, where we confirm that our initial models have the expected result
of showing that predictive proactive adaptation always performs better than
different reactive variants. It is therefore possible to build on these models to
introduce uncertainties, with respect to both attacker behavior and effective-
ness of mitigation and detection strategies, as well as to investigate different
combinations of the various approaches.

3

2 Background and Related Work

2.1 Rainbow
A system is self-adaptive if it can reflect on its behavior at runtime and change itself
in response to environmental conditions, errors, and opportunities for improvement.
In the approach advocated by this report, self-adaptation is provided by adding
a self-adaptation layer that reasons about observations of the runtime behavior of
some target system, decides whether the system is operating outside its required
bounds and what changes should be made to restore the system, and effects those
changes on the system. This form of self-adaptation adds a closed control loop
layer onto the system. Adaptive control consists of four main activities: Monitoring,
Analysis, Planning, and Execution (commonly referred to as the MAPE loop) [KC03].
Classical control loops use models of target physical systems to reason about control
behavior. Similarly, self-adaptive software requires models to reason about the self-
adaptive behavior of a system. Architecture models [SG96] represent a system in
terms of its high level components and their interactions (e.g., clients, servers, etc.)
reducing the complexity of the reasoning models and providing systemic views on
their structure and behavior (e.g., performance, protocols of interaction, etc.). Much
research in self-adaptive systems has therefore coalesced around using models of the
software architecture of systems as the basis of reasoning about behavior and control
[MDEK95, OGT+99, DvdHT02, GCH+04], collectively termed architecture-based
self-adaptive systems.

Specifically, in the approach presented here we employ the Rainbow framework
for architecture-based self-adaptation to implement an adaptation layer based on the
MAPE loop paradigm (Figure 1). Probes extract information from the target sys-
tem that is abstracted and aggregated by Gauges to update the architecture model.
The Architecture Evaluator analyzes the model and checks if adaptation is needed,
signaling the Adaptation Manager if so. The Adaptation Manager chooses the “best"
strategy to execute, and passes it on to the Strategy Executor, which executes the
strategy on the target system via Effectors. The best strategy is chosen on the basis
of stakeholder utility preferences and the current state of the system, as reflected in
the architecture model. The underlying decision making is based on decision theory
and utility [Nor68]; varying the utility preferences allows the adaptation engineer to
affect which strategy is selected. Each strategy, which is written using the Stitch
adaptation language [CG12a], is a multi-step pattern of adaptations in which each
step evaluates a set of condition-action pairs and executes an action, namely a tac-
tic, on the target system. A tactic defines an action, packaged as a sequence of

4

System
Layer

Architecture Layer

Target SystemTarget System

Translation
Infrastructure

Adaptation
Manager

Model Manager

Strategy
Executor

System API ProbesEffectors

Gauges

Architecture
Evaluator

Figure 1: The Rainbow Framework
commands (operators). It specifies conditions of applicability, expected effect and
cost-benefit attributes to relate its impact on the quality dimensions. Operators are
basic commands provided by the target system.

As a framework, Rainbow can be customized to support self-adaptation for a wide
variety of system types. Customization points are indicated by the cut-outs on the
side of the architecture layer in Figure 1. Different architectures (and architecture
styles), strategies, utilities, operators, and constraints on the system may all be
changed to make Rainbow reusable in a variety of situations. In addition to providing
an engineering basis for creating self-adapting systems, Rainbow also provides a basis
for their analysis. By separating concerns, and formalizing the basis for adaptive
actions, it is possible to reason about fault detection, diagnosis, and repair separately
from the behavior of the system. In addition, the focus on utility as a basis for repair
selection provides a formal platform for principled understanding of the effects of
repair strategies [Che08].

Rainbow separates adaptation logic from application logic so that it is possible
to reflect about application level properties, including security, separately and to
use utility theory as a basis for reasoning about the best adaptation to use in the
presence of multiple such properties.

One of the limitations of Rainbow for MTD is that it has mainly been used
in reactive self-adaptive contexts, i.e., adaptations only occur as a result of some
observation in the managed system. In this report we explore generalizing this to
use proactive and predictive information to reason about adaptations that may not
occur as a result of some event, which is more amenable for MTD adaptation.

5

2.2 Moving Target Research
A large body of recent research has been aimed at describing, consolidating and im-
proving various moving target approaches (e.g., [LFW13, CF11] focus on generating
diversity by using genetic algorithms to generate variants) . In [ORM+13], the au-
thors categorize existing approaches into six broad categories: runtime environment,
software, networks, platforms, and data. Within each category they identify threat
models, operational costs, and weaknesses of each approach with respect to current
known attacks. This work acts as a source of existing techniques, and we focus on the
subset that is related to architectural changes of the system being protected. In this
work, we do not consider tactics at the network or operating system level. Beyond
operational costs, none of the existing descriptions of moving target tactics consider
their impact on other qualities of the system, such as reliability, performance, etc.
Furthermore, they do not quantify their effect on the system security. A large body
of existing moving target research falls into the uninformed category - tactics are
used (either at design or run time) without factoring in changing levels of threat.
The work described here lays the foundations for moving from uninformed adapta-
tion by using predictions about the level of threat and game theory to determine
which tactics to choose at run time which strategies (combinations) might be most
effective in the current environment.

There have been some work on predicting adversary behavior to learn new de-
fenses. Notably, [CG12b, CG13] use a combination of game theory and machine
learning to understand when adversaries are adapting their behavior and using this
to adapt defenses accordingly. The game theory used here is a hidden mode hybrid
dynamical system, where an informed player has information that is hidden from a
second player. The informed player weighs the benefit of using its hidden information
for short term gain at the cost of making the information known to the uninformed
player. In this way, over repeated plays of the game, different moving target strate-
gies can be devised. In contrast, the approach that we have taken builds upon
a technique for modeling and analyzing turn-based Stochastic Multiplayer Games
(SMGs) [C+13a] in which no information is hidden to any of the players. This setup
is used to compare the performance of different defense variants in the presence of
optimal attacker strategies.

6

Client 1

Client 2

Client 3

Disp. 1

Disp. 2

Web Srv 1

Web Srv 2

Web Srv 3 Database

Storage

Figure 2: Architecture of the Znn web system used for evaluation.

3 Moving Target Tactics

3.1 Example system: Znn
Before detailing our approach we introduce an example that will be used throughout
the rest of the paper. In this paper, we use a custom-built web system, Znn. Znn is
a typical web system using a standard LAMP stack (Linux, Apache, MySQL, PHP)
mimicking a news site with multimedia new articles. Znn’s architecture is depicted
in Figure 2.

In this system, multiple clients access one of two dispatchers (also termed “load
balancers”), which forward requests to a random web server in a farm. If the request
is not for an image, the web server will access the database to fetch the required
information and generate the news page with HTML text and references to images.
Web clients will then access the system to fetch the images. Images are served from
a separate file system storage component, shared among all web servers.

In previous work, we have used Znn to illustrate how to reason about various prop-
erties of the system including performance, cost, and information fidelity [CGS06],
as well as mitigating DoS attacks [SCG+14], from which this example is drawn.

3.1.1 Example Tactics

In Znn we have defined various tactics that can be used to change Znn’s configration.
Adding Capacity: This tactic commissions a new replicated web server. An equal
portion of all requests will be sent to all active servers. To integrate this into Rainbow,
we need to know how many servers are active and how many may be added. In the
model of the system, we separate the components into those that are active in Znn
and those that are available resources in the environment.
Reducing Service: Znn has three fidelity levels: high, which includes full multi-
media content and retrieves information from the database; medium, which has low
resolution images; and text only, which does not provide any multimedia content.

7

This tactic reduces the level of service one step (e.g, from high to medium). The
fidelity level is represented in the architecture model by annotating servers with a
fidelity property.
Blackholing: If a (set of) IPs is determined to be attacking the system, then we
use this tactic to add the IP address to the blacklist of Znn. In the model, we need
to know two things: (1) what are the currently blacklisted clients, and (2) which
clients are candidates for blacklisting. In the architectural model, each load balancer
component defines a property that reflects the currently blacklisted IPs, and each
client in the model has a property that indicates the probability that it is malicious.
Throttling: Znn has the capability to limit the rate of requests accepted from
certain IPs. In the model, these IPs are stored in a property of each load balancer
representing the clients that are being throttled in this way. Similar to Blackholing,
the maliciousness property on client components in the model can be used to indicate
potential candidates.
Captcha: Znn can dynamically enable and disable Captcha, by forwarding requests
to a Captcha processor. Captcha acts as a Turing test, verifying that the requester
is human.
Reauthenticate: Znn has a public interface and a private interface for subscrib-
ing clients. This tactic closes the public interface and forces subscribing clients to
re-authenticate with Znn. Like Captcha, Reauthentication verifies whether the re-
quester is a human. However, re-authentication is more strict than Captcha because
it requires that the requester be registered with the system. After re-authentication
is deployed, anonymous users will be cut off from the system.

Tactics in Rainbow are specified through the Stitch adaptation language [CG12a].
Tactics require three parts to be specified: (1) the condition, which specifies when a
tactic is applicable; (2) the action, which defines the script for making changes (to the
model of) the system; and (3) the effect, which specifies the expected effect that the
tactic will have on the model. In keeping with closed-loop control conventions, when
a tactic is executed in Rainbow, changes are not made directly to the model. Rainbow
translates these operations into effectors that execute on the system. Gauges then
update the model according to the changes they observe.

Listing 1 shows an example tactic for enabling Captcha. Line 2 specifies the
condition, which says that the tactic may be chosen if any load balancer does not
have Captcha enabled. Lines 4-6 specify the action, which is to select the set of load
balancers with Captcha disabled, and call the operation to enable Captcha. Line 9
states that the tactic succeeds only if all load balancers will have Captcha enabled.

8

1 tactic addCaptcha () {
2 condition {exists lb:D.ZNewsLBT in M.components | !lb.captchaEnabled;}
3 action {
4 set lbs = {select l : D.ZNewsLBT in M.components | !l.captchaEnabled};
5 for (D.ZNewsLBT l : lbs) {
6 M.setCaptchaEnabled (l, true);
7 }
8 }
9 effect {forall lb:D.ZNewsLBT in M.components | lb.captchaEnabled;}
10 }

Listing 1: Tactic for adding Captcha to Znn.

3.1.2 Example Strategies

It is one thing to have a set of individual tactics that can mitigate threats, but it is
also important to be able to compose to form richer strategies of mitigation, consider-
ing aspects such as tactic ordering, uncertainty, and timing. It is also desirable to be
able to analyze these strategies for properties such as expected effect on the system,
likelihood of success, and relationship with other quality attributes of concern. For
example, the conditions under which throttling is applicable overlap the conditions
under which blackholing applies – which tactic should be done first?

To answer these questions, Rainbow has the concept of strategy. A strategy encap-
sulates a dynamic adaptation process in which each step is the conditional execution
of some tactic. In Stitch, a strategy is characterized as a tree of condition-action-
delay decision nodes, with explicitly defined probabilities for conditions and a delay
time-window for observing tactic effects. A strategy also specifies an applicability
condition as a predicate that is evaluated on the model during strategy selection.

1 strategy Challenge [unhandledMalicious || unhandledSuspicious] {
2 t0: (cNotChallenging) −> addCaptcha () @[5000] {
3 t0a: (success) −> done;
4 t0b: (default) −> fail;
5 }
6 t1: (!cNotChallenging) −> forceReauthentication () @[5000] {
7 t1a: (success) −> done;
8 t1b: (default) −> fail;
9 }
10 }

Listing 2: Strategy for challenging attackers.

In the DoS example with Znn, it is possible to combine tactics in multiple ways.
For this paper, we have organized them into three common patterns:
Challenge: This strategy combines the Captcha and Reauthenticate tactics. If

9

Captcha is not enabled, then the strategy will enable it, otherwise it will enforce
re-authentication.
Eliminate: This strategy combines the blackhole and throttling tactics. If there
are clients that we are confident are malicious, then this strategy will add them to
the blacklist; otherwise, if there are clients that we find suspicious, we will throttle
them.
Outgun: This strategy combines the tactics for adding capacity and reducing service
to try to outgun the attack.

Listing 2 lists the Challenge strategy. The strategy specifies its condition of appli-
cability, which is when this strategy may be chosen by Rainbow. In the example, the
predicate unhandledMalicious || unhandledSuspicious elides first order logic expressions
that use the properties of the model to determine if there are unhandled malicious
or suspicious clients. The body of the strategy is modeled after Dijkstra’s Guarded
Command Language [Dij75], with several additional features. The Challenge strat-
egy has two top-level condition-action blocks labeled t0 and t1. If more than one
guard for these nodes evaluates to true, then one of the branches is chosen non-
deterministically (in the example, the conditions are mutually exclusive and so only
one will apply).

To account for the delay in observing the outcome of tactic execution in the
system (i.e., having Rainbow observe the tactic effect through monitoring), t0 and t1
specify a delay window of 5000 milliseconds (e.g., end of line 2). During execution,
the child node t0a is evaluated as soon as the tactic effect is observed or the delay
window expires, whichever occurs first.

Several keywords can be used within the body of a strategy to support control
flow and termination: success is true if the tactic completes successfully and its effect
is observed; done terminates the strategy, signifying that the strategy has achieved
its adaptation aims; fail terminates without adaptation aims being achieved; default
specifies the branch that should be taken if no other node is applicable.

To connect with the running system, system-level information needs to be re-
flected into model-level knowledge that can be used for making appropriate decisions.
In Rainbow, we can use a variety of monitoring technologies at the system level that
are aggregated through Rainbow Gauges to provide architecture-level information.
In addition to gauges that report on the state of Znn, we also require information
about each client’s response time and maliciousness. Determining this information
is a challenge in its own right, and not the focus of this paper. For the purpose of
this work, we use simplistic measures to determine maliciousness, e.g., the amount
of traffic generated by a client. In principle, we can integrate off-the-shelf intrusion
detection or behavior monitoring into Rainbow by adding and adjusting probes and

10

gauges.
Defining quality objectives
In Rainbow it may be the case that several strategies address a particular concern.

To enable decision making for selecting strategies Rainbow uses utility functions and
preferences, which are sensitive to the context of use and able to consider trade-
offs among multiple potentially conflicting objectives. By evaluating all applicable
strategies against the different quality objectives, we obtain an aggregate expected
utility value for each strategy by using the specified utility preferences. The strategy
selected for execution by the adaptation manager is the one that maximizes expected
utility.

Specifically, the strategy selection process entails: (i) defining quality objectives,
relating them to specific runtime conditions, (ii) specifying the impact of tactics
on quality objectives, and (iii) assessing the aggregate impact of every applicable
strategy on the objectives under the given runtime conditions.

Defining quality objectives requires identifying the concerns for the different
stakeholders in the self-adaptation. For example, in the case of DoS, users of the
system are concerned with experiencing service without any disruptions, whereas
the organization is interested in minimizing the cost of operating the infrastructure
(including not incurring additional operating costs derived from DoS attacks). For
users, service disruption can be mapped to specific runtime conditions such as (i) ex-
perienced response time for legitimate clients, and (ii) user annoyance, often related
to disruptive side effects of defensive tactics, such as having to complete a Captcha.
For the organization, we map cost to the specific resources being operated in the
infrastructure at runtime (e.g., number of active servers). Moreover, in addition
to keeping cost below budget, the organization is also interested in minimizing the
fraction of that cost that corresponds to resources exploited by malicious clients.
Hence, we can identify minimizing the presence of malicious clients as an additional
objective.

In short, we identify four quality objectives involved in deciding how to mitigate
DoS: (legitimate) client response time (R), user annoyance (A), cost (C), and client
maliciousness (M).

Each quality of concern is characterized as a utility function that maps to an
architectural property. In this case, utility functions are defined by an explicit set of
value pairs (with intermediate points linearly interpolated). Table 1 summarizes the
utility functions for DoS. Function UR maps low response times (up to 100ms) with
maximum utility, whereas values above 2000 ms are highly penalized (utility below
0.25), and response times above 4000 ms provide no utility. It is worth noticing
that in this case, utility and mapped property values across all quality dimensions

11

Table 1: Utility functions for DoS scenarios
UR UM UC UA
0 : 1.00 0 : 1.00 0 : 1.00 0 : 1.00
100 : 1.00 5 : 1.00 1 : 0.90 100 : 0.00
200 : 0.99 20 : 0.80 2 : 0.30
500 : 0.90 50 : 0.40 3 : 0.10
1000 : 0.75 70 : 0.00
1500 : 0.50
2000 : 0.25
4000 : 0.00

are inversely proportional, although this is not necessarily true in general. Utility
functions in this case are piecewise linear interpolations between points.

To allow for reasoning about multiple concerns, utility preferences capture busi-
ness preferences over the quality dimensions, assigning a specific weight to each one
of them. In the case of DoS we consider three scenarios where priority concerns are
summarized in Table 2.

Table 2: Utility preferences for DoS scenarios
Scenario Priority wUR wUM wUC wUA

1 Minimizing num-

ber of malicious

clients.

0.15 0.6 0.1 0.15

2 Optimizing good

client experience.

0.3 0.3 0.1 0.3

3 Keeping cost

within budget.

0.2 0.2 0.4 0.2

Describing the impact of tactics on quality objectives
To choose a particular strategy, we need to determine its anticipated effect on the

qualities of concern, map them to changes in utility and then use preferences to score
each strategy so that one the one with the highest desired impact on utility is chosen.
To assess the aggregate impact of strategies on quality objectives, we first need to
assess their impact on the specific run time conditions of the system. Ultimately,
run time conditions are affected by the tactics employed during the execution of
strategies, hence we need to describe how the execution of individual tactics affects
them.

12

Table 3: Tactic cost/benefit on qualities and impact on utility dimensions
Tactic Response Time Malicious Clients Cost User Annoyance

(R) (M) (C) (A)
∆ Avg. Resp. ∆UR ∆ Malicious ∆UM ∆ Operating ∆UC ∆ User ∆UA
Time (ms) Clients (%) Cost (usd/hr) Annoyance (%)

enlistServers -1000 ↑↑↑ 0 - +1.0 ↓↓↓ 0 -
lowerFidelity -500 ↑↑ 0 - -0.1 ↑ 0 -
addCaptcha -250 ↑ -90 ↑↑↑ +0.5 ↓↓ +50 ↓↓
forceReauthentication -250 ↑ -70 ↑↑ 0 - +50 ↓↓
blackholeAttacker -1000 ↑↑↑ -100 ↑↑↑ 0 - +50 ↓↓
throttleSuspicious -500 ↑↑ 0 - 0 - +25 ↓

In the context of DoS, Table 3 shows the impact on different properties of the
tactics employed in DoS scenarios, as well as an indication of how the tactic affects
the utility for every particular dimension (the number of upward or downward ar-
rows is directly proportional to the magnitude of utility increments and decrements,
respectively). While all tactics reduce the response time experienced by legitimate
clients, some of them (e.g., enlistServers and blackholeAttacker) cause a more drastic
reduction, resulting in higher utility gains in that particular dimension. Regarding
the presence of malicious clients, tactics blackholeAttacker and addCaptcha are the
most effective, whereas other tactics (e.g., enlistServers) do not have any impact.
With respect to cost, strategies enlistServers and addCaptcha increase the operating
cost and reduce utility in this dimension, since they require using additional resources
to absorb incoming traffic, or to serve and process captchas. Finally, user annoyance
is increased by the disruption introduced when all users have to re-authenticate or
complete captchas when tactics forceReauthentication and addCaptcha are executed.
Tactics blackholeAttacker and throttleSuspicious also impact negatively on this dimen-
sion, since there is a risk that misdetection of malicious clients will lead to annoying
a fraction of legitimate clients by blackholing or throttling them.

Assessing the impact of strategies
The aggregated impact on utility of a strategy is obtained by: (i) computing

the aggregate impact of the strategy on runtime conditions, (ii) merging aggregated
strategy impact with current system conditions to obtain expected conditions after
strategy execution, (iii) mapping expected conditions to utilities, and (iv) combining
all utilities using utility preferences.

As an example of how the utility of a strategy is calculated, let us assume that the
adaptation cycle is triggered in system state [1500, 90, 2, 0], indicating response time,
percentage of malicious clients, operating cost, and user annoyance level, respectively.
We focus on the evaluation of strategy Challenge.

To obtain the aggregate impact on runtime conditions of a strategy, we need to

13

estimate the likelihood of selecting different tactics at runtime due to the uncertainty
in their selection and outcome within the strategy tree. To this end, the adaptation
manager uses a stochastic model of a strategy, assigning a probability of selection to
every branch in the tree (by default, divided equally among the branches). Figure 3
shows how the aggregate impact on runtime conditions is computed bottom-up in the
strategy tree: the aggregate impact of each node is computed by adding the aggregate
impact of its children, reduced by the probability of their respective branches, with
the cost-benefit attribute vector of the tactic in the node (if any). In the example, the
aggregate impact in the middle level of the tree corresponds to just the cost-benefit
vectors of the associated tactics, since the leaf nodes make no changes to the system
and therefore have no impact. In contrast, the aggregate impact in the root node of
the strategy tree results from the aggregate impacts of its children:
0.5*[-250,-90,+0.5,+50]+0.5*[-250,-70,0,+50]=[-250,-80,+0.25,+50]

fail
[0,0,0,0]

done
[0,0,0,0]

addCaptcha()
[-250,-90,+0.5,+50]

0.5 0.5

fail
[0,0,0,0]

done
[0,0,0,0]

forceReauthentication()
[-250,-70,0,+50]

0.5 0.5

[-250,-80,+0.25,+50]

0.5 0.5

Figure 3: Calculation for aggregate impact of strategy Challenge
Once we have computed the aggregate impact of the strategy, we merge it with

the current system conditions to obtain the expected system conditions after strat-
egy execution:

[1500,90,2,0]+[-250,-80,+0.25,+50]=[1250,10,2.25,50]
Next, we map the expected conditions to the utility space:

[UR(1250),UM(10),UC(2.25),UA(50)]=[0.625, 0.933, 0.25, 0.5]
And finally, all utilities are combined into a single utility value by making use of

the utility preferences. Hence, if we assume that we are in scenario 2, the aggregate
utility for strategy Challenge would be:

0.625*0.3+0.933*0.3+0.25*0.1+0.5*0.3=0.6425
Utility scores are computed similarly for all strategies. In this case, strategies Elimi-
nate and Outgun score 0.6325 and 0.553 respectively, thus Challenge would be selected.

14

3.2 Security Indicators
To enable comparison between different quality properties in Rainbow, it is necessary
to give a quantitative assessment of the particular quality. For example, when we
talk of measures for performance, the properties we can measure are response time or
throughput. [BKLW95] decomposes general quality attributes into many quantifiable
measures in this way. In the example above, we used percentage of malicious clients
as an indicator of DoS attack. However, in general, classical aspects of security are
hard to measure (e.g., confidentiality and integrity). In [Jan09] it is noted that there
is a lack of good estimators for system security, and that research in this area is
needed.

In [RS12], the authors give a summary of a set of indicators that can be used as a
basis for quantifying aspects of security. They categorize security indicators into five
broad categories, with detailed indicators under each, to form a classification tree of
indicators. The broad categories are:

Cost: This category deals with cost measures associated with both the cost to attack
and defend, as well as the losses and damage caused by a security incident and
their remediation.

Probability: This category deals with the likelihood of attack attempts.

Compliance: This category deals with indicators that measure the degree to which
security requirements are met.

Target Coverage: This category deals with all security indicators measuring the
fraction (or the absolute number) of security targets that satisfy a given security
criterion

Effectiveness/Rigor: This category measures the success rate of countermeasures,
and is divided into three subcategories: protection, detection, and response.

The categories themselves are not measurable, but the indicators contained in the
categories can be quantified, making them reasonable candidates for assessing utility
in Rainbow. In this work, we consider a subset of the indicators in these categories
to give an idea about how moving target tactics could be assessed according to these
measures. The measures that we include in this report are:

Countermeasure cost: Measures the cost of the prevention being considered. Lower
values are preferable.

15

Attack cost: Measures resources required by an attacker to attack the system.
Higher costs are preferable.

Defense strength: Measures the strength of the defense of the system. For exam-
ple, increasing an encryption key from 32 bit to 64 bit, or making password
formation checking more stringent will increase the strength of the defense.

Resilience: Measures the percentage of successful/unsuccessful attacks. Ideally, a
defense would raise the percentage of unsuccessful attacks.

Incident: Measure the average severity per incident. Ideally this would be lowered
by a mitigation.

Detection: Measures the time taken to detect an attack.

3.3 Moving Target Tactics
To ascertain the feasibility of using utility theory to reason about moving target
tactics, we surveyed a set of commonly used tactics. These tactics do not change the
functionality of the software system, but instead attempt to make it more difficult
to attack by avoiding common assumptions about the system that an attacker may
make (for example, about the address space layout), and increasing diversity. In this
work, we have looked at the following categories of moving target tactics:

N-Variant: Tactics of this kind take advantage of the fact that the same function-
ality in a system can be provided by multiple different implementations. For
example, in developing a web application, it is possible to use HTTP servers
like Apache’s Tomcat or Microsoft’s IIS. N-Variant tactics have the feature
where they can take advantage of both, either by fielding these variants si-
multaneously or by periodically switching between them. From a defender’s
perspective, having multiple versions typically increases the cost of the system
because multiple implementations must be developed and maintained, and may
require additional resources at run time. It would be possible to alleviate this
somewhat if variants could be automatically generated, for example by using
different address randomization techniques multiple times and fielding these
variants, described below, or by using genetic programming [LFW13].

Randomization: Many tactics take advantage of various assumptions about the
system to develop an exploit. For example, SQL injection techniques take ad-
vantage of knowledge of SQL language and query conventions; rootkits take

16

advantage of address layouts and instructions sets to force jumps into mali-
cious code. Randomization techniques such as RISE, HTML randomization
and SQL randomization, attempt to avoid this by randomizing the instruction
or language, and providing an additional interpretation layer to map to real
instructions. This makes it more difficult to inject attacks by writing, for ex-
ample, standard SQL: if the SQL is not randomized in the same way as the
system expects it will not compile as SQL. Furthermore, re-randomization can
be done periodically to invalidate any reconnaissance that an attacker may
have successfully performed.

Refresh: Refresh tactics attempt to return components to a known-safe state by ei-
ther rebooting an existing component or by restoring a component to a previous
checkpoint.

Resource: Resource tactics manipulate the resources that may be exploitable by
either turning them off, setting limitations on how they may be used, or failing
back to a safe set of components that are more thoroughly protected.

3.3.1 Deciding the Impact of MTD Tactics

Table 4 summarizes the impacts that the various tactics have on different security
indicators (as well as more classical quality attributes such as response time and
availability). While this table is not comprehensive, it give some indication that
some MTD tactics can be assessed with respect to their impact on security indicators.
Actual values need to be assigned when engaging with a particular system, and may
in fact depend on contextual information about the system (such as its size).

The work in this chapter has described how utility can be used to choose between
competing strategies by using impacts stated by tactics within the strategy to es-
timate the impact across multiple dimensions. We have shown that some work on
security indicators may be used to reason about impacts of MTD tactics on aspects
of security, and that it may be possible to use this to reason beyond security. In
short, there seems to be no reason why the utility approach used in Rainbow could
not be used for moving target defenses.

For reasoning about when to to apply strategies composed of these tactics, we
still need to investigate how to proactively apply them. The rest of this reports
details experiments in this direction.

Future work on tactics includes developing a more comprehensive catalog of MTD
tactics and better quantifying their impacts. It also remains to be seen if the security

17

Table 4: A summary of various MTD tactics and their impacts on security and other
quality measures.

Tactic Description

R
es

po
ns

e
ti

m
e

A
va

ila
bi

lit
y

C
ou

nt
er

m
ea

su
re

co
st

A
tt

ac
k

co
st

D
ef

en
se

St
re

ng
th

R
es

ili
en

ce
V

ul
ne

ra
bi

lit
y

In
ci

de
nt

D
et

ec
ti

on

N-Variant
Simultaneous Multiple variants exist simulta-

neously
↑ ↑ ↓ ↑ ↑ ↑ ↑ - -

Switching Switches between variants, but
only one in operation at a time

- - - ↑ ↑ - ↑ - -

Proactive Obsfuca-
tion

Creates variants by using in-
struction set randomization tech-
niques

↑ ↑ ↓↓ ↑ ↑ ↑ ↑ - -

Randomization
ASLR Randomize the address space of

the component
↓ - - ↑ ↑ - - - -

Randomized Instruc-
tion Set Emulation

Encrypts code at load time and
decrypts at execution

↓ - - ↑ ↑ - - - -

HTML Randomiza-
tion

Randomize tags in web pages ↑ - ↓ ↑ ↑ - - - -

SQLRand Like RISE but for SQL. Prevents
SQL injection attacks

↓ ↑ - ↑ - - - - -

Data Randomization Change how data is stored in
memory

↓ - ↓ ↑ - - - ↑ -

Refresh
Checkpoint and Re-
store

Keep checkpoints and randomly
restore back to them

↓ ↓ - ↑ ↑ - - - -

Rejuvenation Periodically restart components - ↓ - ↑ ↑ - - - -
Resource
Turn off services Disable access to non-critical ser-

vices
↓ ↓ ↑ ↑ - ↑ ↑ ↓ -

Fail safe Fall back to a safe or protected
mode

↓ ↓ ↑ ↑ - ↑ ↑ ↓ -

Set Limitations Restrict resource consumption
per request or client

↓ ↓ - ↓ - ↑ - - -

18

indicators can actually be measured in a variety of systems.

4 Proactive Approaches
Many moving target approaches do not use any information when deciding when
and how to change some aspect of the system. For example, DieHard [BZ06], an
address space randomization approach, introduces randomization, heap spacing, and
replicas regardless of what the system and environment state is. These approaches
provide their protection at all times, at the expense of the overheads they introduce.
At the other end of the spectrum, there are approaches that use current information
about the system and environment state and react to changes as needed (see Yuan et
al.’s survey for examples [YEM14]). These reactive approaches have the advantage of
incurring the overhead of the defense approach only when it is needed or affordable to
do so. Their disadvantage is that, because they react to changes in the environment,
they lag behind the state of the environment.

A promising approach that balances these two extremes is proactive adaptation,
which uses predicted information about the near future state of the environment to
avoid the overhead of defenses when they are not needed, and to adapt the system
in time for predicted upcoming situations.

In this chapter we first present proactive self-adaptation in the context of perfor-
mance, which can be objectively measured. Then, we discuss the elements needed to
use proactive approaches for self-adaptation in the context of moving target defense.

4.1 Proactive Self-Adaptation
In reactive self-adaptation the system detects a change, and it adapts to continue
to satisfy requirements, or to maximize some form of instantaneous utility. As men-
tioned before, adopting a reactive approach implies that the system is constantly
trying to catch up with the environment. Consider, for example, a reactive self-
adaptation approach to control the number of servers in Znn in order to maintain
the average response time below 2 seconds, while minimizing the operating cost of
the system (i.e., the number of active servers). Suppose that the system is in a
steady state, satisfying the response time requirement. Then, the traffic on the site
increases, and results in an increased response time. When the response time goes
above the 2 second threshold, the system reacts by adding one or more servers.
This example shows that by the time the servers are added, some requests will have
experienced an undesirable response time.

19

In addition to lagging behind the environment state, when adaptation incurs a
penalty, such as resource consumption or task disruption, reactive approaches can
be suboptimal [P+07]. For example, the system may adapt reacting to a transient
spike in load, only to go back to the previous state moments later, incurring the
adaptation penalty twice, with little or no utility gain. Proactive adaptation lever-
ages predictions of the near future state of the system/environment to make better,
proactive adaptation decisions. Following the same example, a system that that has
a prediction about the near future load on the system can not only avoid unnecessary
adaptations, but also adapt to be in a configuration that suits better the environ-
ment. Figure 4 shows a comparison of a reactive approach, and a proactive approach
to control the number of servers on the dynamic server pool, showing how the latter
achieves better utility.

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
10 arrivals/sec

response time(avg)
active servers

Total Util= 553

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
10

simulation time

arrivals/sec
response time(avg)
active servers

Total Util= 1256

Figure 4: Reactive (top) vs. proactive (bottom) self-adaptation

Besides better handling transient conditions and avoiding lagging behind the
environment, another important aspect of being proactive is to act in advance to
be prepared in time for an upcoming situation. Different adaptation tactics take
different amounts of time to execute; that is, they have latency. Self-adaptation

20

approaches ignore this latency, but we have found that latency-aware adaptation in
general is more effective.

4.1.1 Latency-Aware Proactive Adaptation

Latency-aware adaptation takes into account a tactic’s latency when deciding how
to adapt. In our approach, the goal is to consider the latency of the tactics so
that the sum of utility provided by the system over time is maximized. The effect
of tactic latency on utility is that for tactics that have some latency, the system
does not start to accrue the utility gain associated with the tactic until some time
after the enactment of the tactic. Moreover, negative impacts of the tactic may
have no latency, and start without delay. For example, when adding a server to the
system, the server takes some time to boot and be online, whereas it starts consuming
power—and thereby increases cost—immediately. In this example, it means that the
tactic to add a server causes a drop in utility before it results in a gain.

Another consequence of tactic latency is that some near-future system configu-
rations can be infeasible. For example, let us suppose that the system has to deal
with an increase in load within 5 seconds, and it could handle that with an addi-
tional server. If enlisting an additional server takes 10 seconds, then the desired
configuration that has one additional server 5 seconds into the future is infeasible.
Current approaches that do not take latency into account would consider that so-
lution regardless of whether it is feasible or not. When proactively looking ahead,
taking adaptation latency into account allows the adaptation mechanism to rule out
infeasible configurations from the adaptation space.

A complication arises when tactic latency is longer than the interval between
adaptation decisions. When that is the case, it is possible that during an adaptation
decision, a tactic that has been previously started has not yet reached the point
where its effect will have been realized. If the decisions are made based only on the
currently observed state of the system, ignoring the expected effect of adaptations in
progress, the system will overcompensate, starting unnecessary adaptations. What
is needed is a model of the system that not only represents the current state of the
system, but also keeps track of the expected state of the system in the near future
based on the tactics that have been started but have not yet completed.

4.1.2 Algorithm

The algorithm we present is an extension of an algorithm developed by Poladian
et al. to compute the optimal sequence of adaptation decisions for anticipatory
dynamic configuration [P+07]. Using dynamic programming and relying on a perfect

21

prediction of the environment for the duration of a system run, their algorithm can
find the adaptation decision that at each time step maximizes the future utility,
while accounting for the penalty of switching configurations. They showed that the
algorithm had pseudo-polynomial time complexity, and was therefore suitable for
online adaptation.

The key improvement our algorithm brings is how the latency of tactics is taken
into account. On the one hand, there is an adaptation cost that latency induces. For
example, if adding a server takes λ seconds from the time a server is powered up until
it can start processing requests, and ∆Uc is the additional cost the new server incurs,
then the adaptation cost is λ∆Uc. This cost could be partially handled by the original
algorithm, as a reconfiguration penalty. However, that is not sufficient to handle the
other issues previously mentioned that latency brings, namely, the infeasibility of
configurations and the need to track adaptation progress. Our algorithm for latency-
aware proactive adaptation (Algorithm 1) explicitly handles the issues that arise due
to tactic latency.

In reactive adaptation, the decision algorithm is typically invoked on events that
require an adaptation to be performed. However, for proactive adaptation, the de-
cision must be done periodically, looking ahead for future states that may require
the system to adapt. This algorithm is therefore run periodically, with a constant
interval between runs. We limit the look-ahead of the algorithm to a near-term hori-
zon, which in turn limits how far into the future the environment state needs to be
estimated.

The algorithm relies on these functions and variables:

• C is the set of possible configurations, and Ci is the ith configuration, for
i ∈ [1 . . . |C|].

• servers(c) is the number of active servers (i.e., servers that can process re-
quests) in configuration c.

• totalServers(c) is the total number of servers in configuration c, including
active servers and servers that have been powered up but are not active yet.

• λ is the amount of time it takes for a server to become active after being
powered up.

• sys(x) is the expected system configuration x time units into the future. This
function is used to query the model of the system that keeps track of adapta-
tions in progress to project what is the expected system configuration in the
near future. The current system configuration can be obtained with sys(0).

22

• env(x) is the expected environment state x time units into the future.

• τ is the length of evaluation period.

• H is the look-ahead horizon in terms of evaluation periods. It is required that
τH ≥ λ so that the algorithm is able to evaluate the utility after a new server
becomes active.

• U(c, e) is the instantaneous utility provided by configuration c in environment
e.

• ∆Uc(i, j) is the difference in cost (negative utility) experienced when changing
from a configuration with i servers to one with j servers.

To do dynamic programming, the algorithm uses two matrices, u and n, to store
partial solutions. The element ui,t holds the utility projected to be achieved from
the evaluation period t (with t = 0 being the current period, t = 1 the next one, and
so on) until the horizon if the system has configuration Ci at evaluation period t (a
value of −∞ is used to represent infeasible solutions). The element ni,t holds the
configuration that the system must adopt in period t+1 to attain the projected utility
ui,t if the configuration at time t is Ci. The loop in lines 1-4 initialize the elements
of these matrices at the horizon. In this case, the projected utility of a configuration
is the utility that configuration would achieve given the state of the environment
predicted at the horizon. The following loop (lines 5-29) works backwards from
the horizon, computing the partial solutions using the partial solutions previously
found. For each configuration (lines 6-28), it computes its projected utility or deems
the configuration infeasible. At any given time, a configuration is feasible if either
the system is expected to have enough active servers at that time, or if there is
enough time to add the needed servers (line 9). For a feasible solution, the projected
utility it can achieve is the sum of the utility the configuration obtains in that
particular evaluation period (line 10), and the maximum utility it can achieve in the
periods after that, taking into account any adaptation costs. To compute the latter,
the algorithm iterates over all the feasible configurations that can follow (lines 12-
26) to find the adaptation that maximizes the projected utility (lines 21-24). The
adaptation cost incurred for going from configuration Ci in period t to Cj in period
t + 1 is computed in lines 14-19. To do so, we must determine how many active
servers will already be available in period t, and find the cost increase, if any, to get
to the number of active servers needed by configuration Cj. In general, the number
of active servers available in period t, which is the number of servers required by
configuration Ci, will be carried over to period t + 1 if needed because they will

23

already be active. However, if more servers are expected to be active in period t+ 1,
i.e., in the expected system configuration (sys((t+ 1)τ)), we can assume that there
will be that number of active servers (line 15), as long as not enough time will have
passed to allow the decision of removing a server (line 14).1

Once all the possible solutions have been computed, the algorithm searches for the
configuration the system should have at the current time to maximize the projected
utility (line 30). Finally, it determines if more servers need to be added now so that
they are active by the time they are needed. It does so by looking at the sequence of
configurations that should be adopted in the following evaluation periods (lines 32-
40). The algorithm returns the number of servers that should be added to (if positive)
or removed from (if negative) the system (line 41), taking into account the latency
of the adaptation tactics.

4.2 Simulation
We implemented a simulation of a self-adaptive Znn with two goals. One was to
evaluate the improvement that our algorithm for latency-aware (LA) proactive adap-
tation achieves compared to a non-latency-aware (NLA) approach. The second one
was to compare the theoretical results obtained with stochastic multiplayer games
(SMGs) for generic NLA and LA algorithms (see ch. 5) with the results obtained
with a concrete algorithm. Using simulation allowed us to run many repetitions of
the experiments with randomly generated behaviors of the environment.

The simulation was implemented using OMNeT++, an extensible discrete event
simulation environment [VH08]. It simulates the arrival of requests from clients,
randomly generating requests. The requests arrive at the load balancer of Znn, and
are forwarded to one of the idle servers. If no server is idle, then the requests are
queued in FIFO order until one server becomes available. Each server processes one
request at a time, with a service time distributed with an exponential distribution
with a rate of 1.

The inter-arrival times between client requests are generated randomly with a
rate that changes periodically. Every τ units of time, a new arrival rate is selected
randomly from the interval [0, 2] with a uniform distribution. That rate is then used
to generate exponentially distributed inter-arrivals until the next rate is selected. To
be able to simulate the execution of the system with the same random pattern of

1When planning ahead, we assume that a server will not be removed before it becomes active
(that is, λ units of time after it was added), otherwise, adding it in the first place would have made
no sense. However, we do consider the worst case of a server being removed after having been active
for just one evaluation period.

24

client requests using each of the two algorithms, the request inter-arrival times and
the service times are drawn from two separate random number generators. Thus,
we can compare the utility each algorithm achieves when the system faces the same
pattern of client requests.

The self-adaptive layer of the simulated system works as follows. The system is
monitored by keeping track of request inter-arrival times when a client request arrives,
and of the request response times every time a request processing completes. Once
every evaluation interval τ , these observations are used to compute their average
and standard deviation for the period since the last evaluation. Using the average
response time, and the number of servers in the system, the utility accrued since
the last evaluation is computed using the utility functions and preferences shown in
Table 1.

Next, the adaptation algorithm is used to determine if the system should self-
adapt and how. We implemented both the latency-aware algorithm (Algorithm 1)
and a non-latency-aware algorithm. The latter is basically the same as the former,
except that it does not account for latency other than by considering the adaptation
penalty induced by the cost of having a server powered until it becomes active.
Indeed, the NLA algorithm can be obtained by replacing all the occurrences of λ in
Algorithm 1, except for the one in line 19, with 0. Since the SMG model, which will
be presented in Chapter 5, can only handle the addition or removal of one server
at a time, the implementations of the algorithms were modified to adhere to that
limitation so that the results were comparable.

The sys(x) function used by the algorithms was implemented by maintaining
a model of the system configuration that keeps track of the number of servers in
the system, and how many of them are active. In addition, the model keeps a list
of expected changes in the future. For example, when a new server is added to the
system, an expected change reflecting that the server becomes active is recorded with
an expected time of λ into the future. When sys(x) is invoked, the expected system
state at x time units into the future can be obtained by taking the current system
configuration and applying all the changes expected for the following x time units.
When a server actually becomes active in the simulation, the model of the current
system configuration is updated to reflect that change and the corresponding entry
is removed from the list of expected system changes.

The predictive model of the environment, env(x) was implemented as an ora-
cle that can predict perfectly the average and variance of the request inter-arrival
times for the same horizon used by the algorithm. Although the request arrivals are
randomly generated in the simulation, a perfect prediction can still be achieved by
generating the inter-arrival times before they are consumed by the simulation.

25

Implementing the U(c, e) function requires first estimating the average response
time for requests when the system has configuration c, and the environment is e. In
this case, the relevant properties of the environment are the average and variance
of the inter-arrival times. To estimate the average response time needed for the
utility calculation, we used queueing theory with a G/M/c queueing model (i.e., for
arrivals with a general distribution,2 exponentially distributed service times, and s
servers) [G+11]. Once the average response time is estimated in this way, the utility
is estimated using the utility functions and preferences shown in Table 1.

After the adaptation algorithm has determined how the system has to be changed,
the execution of the adaptation tactics is carried out by adding or removing servers as
needed. The standard queuing components of OMNET++ were modified to support
this dynamic reconfiguration. Furthermore, the server component was modified to
simulate the latency of enlisting a server.

4.2.1 Results

Figure 5 compares one simulation run between non-latency-aware adaptation and
latency-aware adaptation. Overall, LA achieves higher cumulative utility. It can be
observed that the configuration of the system (i.e., the number of active servers) is
better aligned with the environment in the LA case. Furthermore, the NLA algorithm
sometimes adds servers, and as soon as they have finished booting, it removes them,
getting absolutely no utility but incurring the cost of powering them up.

We ran the simulation with two different system execution lengths, 100s and 200s
respectively.3 The simulated system considers a pool of up to 4 servers, out of which 2
are initially active. The evaluation period duration τ is set to 10s, and for each version
of the model, we compute the results for three variants with different latencies for the
activation of servers of up to 3τ . The horizon used for the algorithms was computed
so that if the system was running with one server, it had a horizon large enough to
be able to compute the effect of adding the three remaining servers. For that reason,
the horizon was calculated as 3λ

τ
+ 1, the number of periods needed to enlist three

servers plus one more period to consider the impact on utility of the change. For
each combination of parameters, the simulation was run 1000 times. Table 6 shows

2We chose to use a model for a general distribution of arrivals since: (i) although arrivals
are generated with an exponential distribution, the rate parameter of the distribution is changed
periodically, and (ii) the queueing model is for steady-state behavior and does not account for any
backlog of requests that could have remained in the system from a previous period with higher
traffic intensity. Hence, we found the general distribution model was a better fit.

3These durations were used in the simulations to get results comparable with those obtained
with SMGs, presented in 5.1.5.

26

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
10 arrivals/sec

response time(avg)
powered servers
active servers

Total Util= 463

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
10

simulation time

arrivals/sec
response time(avg)
powered servers
active servers

Total Util= 986

Figure 5: NLA (top) vs. LA (bottom) self-adaptation

descriptive statistics of the utility obtained with each approach, and Table 7 shows
effect statistics of the LA algorithm with respect to NLA algorithm. On average, the
latency-aware algorithm outperformed the non-latency-aware one. The LA algorithm
obtained on average about 5% more utility when the tactic latency was equal to
the evaluation period, and 10% for latencies two and three times larger than the
evaluation period. The standardized effect size measure statistic Â12 [AB12] shows
that LA outperforms NLA 66% to 81% of the times, depending on the parameters.
For several combinations of parameters, the minimum percentual utility difference
∆U(%) was negative, meaning that NLA did better. This is due to a limitation
of the queueing model used by the algorithms to estimate the response time of
different configurations, because it computes the steady-state response time, and,
therefore, ignores the effect of arrival spikes that may leave a backlog of arrivals to
be processed in later periods. The LA algorithm avoids adaptation when there are
transient increases in load if the cost of enlisting a server will be higher than the
negative impact of not adding it. Because of the limitation of the queueing model,
it sometimes underestimates that negative effect. Since the NLA algorithm does

27

not account for the latency of the tactic, it is more prone to add servers, and that
gives it an advantage in these cases. These situations were not very common in our
experiment runs, as indicated by the 10% quantile, which, except for the cases with
the lowest tactic latency, was positive. Furthermore, it is worth noting that this is a
limitation of the U(c, e) function used by the algorithm, and not a problem with the
algorithm itself.

Table 6: Simulation results for Znn: accrued utility
MAX_TIME Latency Latency-Aware Non-Latency-Aware

(s) (s) min. avg. max. min. avg. max.
τ 39.18 67.29 84.41 33.80 62.63 84.49

100 2τ 44.66 69.33 84.55 36.33 62.31 83.20
3τ 48.05 69.40 84.55 31.14 62.48 83.20
τ 81.99 133.20 167.20 82.48 125.00 156.90

200 2τ 105.90 138.10 167.20 80.46 124.40 160.00
3τ 106.20 138.40 167.20 85.81 124.70 160.00

Table 7: Simulation results for Znn: LA and NLA comparison
MAX_TIME Latency ∆U(%)

(s) (s) Â12 min. 10% quant. avg. max.
τ 0.66 -27.15 -0.65 6.73 31.32

100 2τ 0.73 -23.86 3.10 10.34 37.69
3τ 0.72 -0.88 3.12 10.24 38.66
τ 0.69 -15.63 -0.96 5.98 21.70

200 2τ 0.81 -7.82 4.89 10.05 30.53
3τ 0.81 0.00 4.85 10.01 28.32

4.3 Proactive Self-Adaptation for Moving Target
Moving target approaches that do not use any environment or system information
to decide when and how to move have the problem of using resources and possibly
affecting other system qualities even in situations when defensive movement is not
needed. At the other extreme, reactive approaches to self-protection overcome those
issues by reacting only when needed. However, due to their limited focus to decisions
based on the current system and environment state, they have other disadvantages.

28

For example, a reactive system may adapt frequently, and consequently result in
increased use of resources and user disruption. Proactive adaptation, on the other
hand, looks ahead and decides how to adapt using not only the current state of the
system and environment, but also its predicted near term evolution. In that way,
it can compute a sequence of adaptations that reduces the impact on resources and
users. Furthermore, some adaptation tactics need some time since they are started
until they cause the intended effect. For example, server rejuvenation requires waiting
for the transactions currently executing on the server to complete, in addition to the
time it takes to stop the server, refresh its software image, and restart it. The
effectiveness of security tactics that are not instantaneous can be improved with
latency-aware proactive self-adaptation.

Proactive self-adaptation has the potential to improve the effectiveness of mov-
ing target defense while minimizing its impact on other system qualities. However,
several elements are needed to realize that potential. We now present this elements
and describe how they could be realized.

Environment prediction The environment typically includes the resources a sys-
tem uses, and the tasks users perform with it. Generally, self-adaptive systems know
the current state of the environment. For example, what the available bandwidth,
and user request arrival rate is at the time the analysis is done. In addition to
this, proactive self-adaptation requires a prediction of the near future state of the
environment. In the algorithm previously presented, the function env(x) provided
the interface to environment prediction, returning the expected environment state x
units of time into the future. Poladian et al. developed a calculus that can be used to
predict the near future state of the environment by combining state trending infor-
mation with knowledge of seasonal and periodic changes, upper and lower bounds,
and scheduled events [P+07]. For proactive self-protection, predictions specific to
security are needed. Although local trending may not be suitable for predicting an
attack to a single host, it may be possible to exchange attack information among
multiple systems so that all can benefit from it. For instance, if one server is at-
tacked, or detects its ports are being scanned, it could share that knowledge with
other systems. Even if the system that detected the event has to adapt reactively
to it, the other systems could incorporate this information into their prediction of
the environment, allowing them to proactively adapt. Other approaches allow pre-
dicting the environment state locally. One example is the work of Fava et al., which
predict future actions in ongoing attacks [FBY08]. Another approach that can be
used to predict the environment with respect to security is modeling attackers and
the system being protected in stochastic games, as it is described in ch. 5.

29

Projected system state There are two options for dealing with the interaction
between the analysis in the self-adaptive system and tactics whose latency is longer
than the analysis period. One option is to disable the analysis until the tactic
completes its execution. In that way, the analysis and planning do not need to
consider the possibility of having a tactic currently being executed. Although this
is the simplest approach, it prevents the system from taking further action while
one tactic is executing. The other option is to let the analysis run even if tactics
are still executing. When tactics are still executing, the state of the system in the
near future is not going to be the same than the its state at the time of the analysis
because the complete effect of the tactic is yet to be manifested. To be correct, the
analysis must be able to evaluate the projected state of the system in the context of
the estimated environment state in the near future. To achieve this, the model of
the system must provide not only its current state, but also its projected state in the
near future, given the tactics that are currently being executed. Doing this requires
that in addition to updating the model of the system with information obtained by
monitoring, the self-adaptive system has to be able to compute the system state that
will result from applying the selected adaptation tactics.

Reasoning frameworks In reactive self-adaptation, the system reacts to an ex-
isting condition, such as detecting that the response time is above its acceptable
threshold. Two things to note in that case are (i) that the system can observe
through its monitoring components the metric it has to control; and (ii) that since
the system is already in an undesirable state, any tactic that lowers the response
time will be useful to improve the state of the system in that quality dimension.
With proactive adaptation, the system is looking ahead, and even if it had a perfect
prediction of the near future environment state, the qualities the system is control-
ling are only indirectly affected by the predicted variables. For example, even if the
system has a perfect prediction of the future request arrival rate, the response time is
a function of that variable and the state of the system. Therefore, the system needs
to be able to reason about the resulting response time given the predicted request
arrival rate and the state of the system. In that case, as shown in the previous sec-
tion, queuing theory provides the reasoning framework. Predictive theories of this
kind do not exist in the realm of security yet, so reasoning frameworks will have
to be based on other approaches such as simulation or game theory (see 5). With
regards to (ii) above, in proactive adaptation the system may not necessarily be in
an unacceptable state. Therefore, the system must being able to determine whether
an adaptation tactic will improve the state of the system or not, which requires a
reasoning framework.

30

5 Multiplayer Games for Moving Target Defense
Automatic verification techniques for probabilistic systems have been successfully
applied in a variety of application domains that range from power management or
wireless communication protocols, to biological systems. In particular, techniques
such as probabilistic model checking provide a means to model and analyze systems
that exhibit stochastic behavior, effectively enabling reasoning quantitatively about
probability and reward-based properties (e.g., about the system’s use of resources,
or time).

Competitive behavior may also appear in (stochastic) systems when some compo-
nent cannot be controlled, and could behave according to different or even conflicting
goals with respect to other components in the system. In such situations, a natural
fit is modeling a system as a game between different players, adopting a game-
theoretic perspective. Automatic verification techniques have been successfully used
in this context, for instance for the analysis of security [KR01] or communication
protocols [HW03].

A promising approach to analyzing self-adaptation is modeling both the self-
adaptive system and its environment as two players of a game, in which the system
is trying to maximize an accumulated reward (which may be described e.g., in terms
of utility functions and preferences, enabling the effective analysis of tradeoffs among
different concerns such as security, performance, or cost). Although in general, the
environment does not have any predefined goal, in the context of MTD it must be
considered as an adversary of the system, since this will enable worst-case scenario
analysis regarding the maximum damage that a hostile environment including at-
tackers might be able to inflict upon the system.

In this chapter, we first present an analysis technique based on model checking of
stochastic multiplayer games (SMGs) that enables us to quantify the potential ben-
efits of employing different types of algorithms for proactive self-adaptation. Specifi-
cally, we show how the technique enables the comparison of alternatives that consider
tactic latency information for proactive adaptation with those that are not latency-
aware. Then, we place the approach in the context of MTD, discussing the elements
required to analyze and synthesize defensive strategies, illustrating the approach with
a stochastic game model that enables the analysis of the interplay between different
variants of MTD, and a hostile environment including an attacker.

31

5.1 Stochastic Game Analysis for Proactive Self-Adaptation
Our approach to analyzing adaptation builds upon a recent technique for modeling
and analyzing SMGs [C+13a]. In this approach, systems are modeled as turn-based
SMGs, meaning that in each state of the model, only one player can choose be-
tween several actions, the outcome of which can be probabilistic. Players can either
cooperate to achieve the same goal, or compete to achieve their own goals.

The approach includes a logic called rPATL for expressing quantitative properties
of stochastic multiplayer games, which extends the probabilistic logic PATL [CL07].
PATL is itself an extension of ATL [A+02], a logic extensively used in multiplayer
games and multiagent systems to reason about the ability of a set of players to
collectively achieve a particular goal. Properties written in rPATL can state that a
coalition of players has a strategy which can ensure that either the probability of an
event’s occurrence or an expected reward measure meets some threshold.

rPATL is a CTL-style branching-time temporal logic that incorporates the coali-
tion operator 〈〈C〉〉 of ATL [A+02], combining it with the probabilistic operator
P./q and path formulae from PCTL [BdA95]. Moreover, rPATL includes a gener-
alization of the reward operator Rr

./x from [F+11] to reason about goals related to
rewards. An example of typical usage combining coalition and reward operators is
〈〈{1, 2}〉〉Rr

≥5[Fcφ], meaning that “players 1 and 2 have a strategy to ensure that
the reward r accumulated along paths leading to states satisfying state formula φ
is at least 5, regardless of the strategies of other players.” Moreover, extended ver-
sions of the rPATL reward operator 〈〈C〉〉Rr

max=?[F? φ] and 〈〈C〉〉Rr
min=?[F? φ], enable

the quantification of the maximum and minimum accumulated reward r along paths
that lead to states satisfying φ that can be guaranteed by players in coalition C,
independently of the strategies followed by the rest of players.

Reasoning about strategies is a fundamental aspect of model checking SMGs,
which enables checking for the existence of a strategy that is able to optimize an
objective expressed as a property including an extended version of the rPATL reward
operator. The checking of such properties also supports strategy synthesis, enabling
us to obtain the corresponding optimal strategy. An SMG strategy resolves the
choices in each state, selecting actions for a player based on the current state and a
set of memory elements.4

By expressing properties that enable us to quantify the maximum and minimum
rewards that a player can achieve, independently of the strategy followed by the
rest of players, we can analyze the performance of a particular type of adaptation
algorithm, giving an approximation of the reward that an optimal decision maker

4See [C+13a] for more details on SMG strategy synthesis.

32

would be able to guarantee both in worst and best-case scenarios (by synthesizing
strategies that optimize different rewards). These properties follow the general pat-
tern 〈〈P〉〉RU

./[Fcω], where P is a set of players that can include the system and/or
the environment, U is a reward that encodes the instantaneous utility of the system,
./ ∈ {min =?,max =?} identifies whether we are considering the minimum or the
maximum utility reward, respectively, and ω is a state formula that indicates the
termination of the system’s execution. Section 5.1.2 details how such properties are
used in our approach.

In the remainder of this section, we first present a SMG model of Znn.com that
enables the comparison of latency-aware against non-latency-aware adaptation. We
then describe how these models can be analyzed and show some results for different
instances of the model.

5.1.1 SMG Model

Our formal model is implemented in PRISM-games [C+13b], an extension of the
probabilistic model-checker PRISM [K+11] for modeling and analyzing SMGs. Our
game is played in turns by two players that are in control of the behavior of the
environment and the system, respectively. The SMG model consists of the following
parts:
Player definition. Listing 3 illustrates the definition of the players in the stochastic
game: player env is in control of all the (asynchronous) actions that the environment
can take (as defined in the environment module), whereas player sys controls all
transitions that belong to the target_system module.5 Global variable turn in line 4
is used to make players alternate, ensuring that for every state of the model, only
one player can take action. Turn-based gameplay suffices to naturally model the
interplay between the environment and the system, which only senses environment
information and reacts to it if necessary at discrete time points.

1 player env environment endplayer
2 player sys target_system,[enlist],[enlist_trigger],[discharge] endplayer
3 const ENV_TURN=1, SYS_TURN=2;
4 global turn:[ENV_TURN..SYS_TURN] init ENV_TURN;

Listing 3: Player definition for Znn’s SMG

5Actions enlist_trigger, enlist, and discharge are explicitly labeled to improve readability (see
Listing 5), but are still asynchronous in our model.

33

Environment. The environment is in control of the evolution of time and other
variables of the execution context that are out of the system’s control (e.g., ser-
vice requests arriving at the system). The choices in the environment module are
specified non-deterministically to obtain a representative specification of the envi-
ronment (through strategy synthesis) that is not limited to specific behaviors, since
this would limit the generality of our analysis. Listing 4 shows the encoding used for
the environment, in which Lines 1-3 define different constants that parameterize its
behavior:6

• MAX_TIME defines the time frame for the system’s execution in the model
([0,MAX_TIME]).

• TAU sets time granularity, defining the frequency with which the environment
updates the value of non-controllable variables, and the system responds to
these changes. The total number of turns for both players in the SMG is
MAX_TIME/TAU. Two consecutive turns of the same player are separated by
a time period of duration TAU.

• MAX_ARRIVALS constrains the maximum total number of requests that can
arrive at the system for processing throughout its execution. Unconstrained
arrivals would result in an unrealistic behavior of the environment (e.g., by
following the strategy of continuously flooding the system with requests).

• MAX_INST_ARRIVALS is the maximum number of arrivals that the environ-
ment can place for the system to process during its turn (i.e., during one TAU
time period).

Moreover, lines 6-9 declare the different variables that define the state of the
environment:

• t keeps track of execution time.
• arrivals_total keeps track of the accumulated number of arrivals throughout the

execution.
• arrivals_current is the number of request arrivals during the current time period.

Each turn of the environment consists of two steps:

1. Setting the amount of request arrivals for the current time period. This is
achieved through a set of commands that follow the pattern shown in List-
ing 4, line 10: the guard in the command checks that (i) it is the turn of the

6Constant values not defined in the model are provided as command-line input parameters to
the tool.

34

1 const MAX_TIME;
2 const TAU;
3 const MAX_ARRIVALS, MAX_INST_ARRIVALS;
4
5 module environment
6 t : [0..MAX_TIME] init 0;
7 arrivals_total : [0..MAX_ARRIVALS] init 0;
8 arrivals_current : [0..MAX_INST_ARRIVALS] init 0;
9 a_upd : bool init false;

10 [] (t<MAX_TIME) & (turn=ENV_TURN) & (arrivals_total+x<MAX_ARRIVALS) & (!a_upd) −>
(arrivals_current’=x) & (a_upd’=true);

11 ...
12 [] (t<MAX_TIME) & (turn=ENV_TURN) & (a_upd) −> 1:(t’=t+TAU) & (a_upd’=false) &

(arrivals_total’=arrivals_total+arrivals_current) & (turn’=SYS_TURN);
13 endmodule

Listing 4: Environment module

environment to move, (ii) the end of the time frame for execution has not been
reached yet, and (iii) the value of request arrivals for the current time period
has not been set yet (controlled by flag a_upd). If the guard is satisfied, the
command sets the value of request arrivals for the current time period (rep-
resented by x in the command). It is worth noticing that there may be as
many of these commands as different possible values can be assigned to the
number of request arrivals for the current time period (including zero for no
arrivals). Probabilities in these commands are left unspecified, since it will
be up to the strategy followed by the player (to be synthesized based on an
rPATL specification) to provide the discrete probability distribution for this
set of commands.

2. Updating the values of the different environment variables (line 12), by: (i) in-
creasing the t time variable one step, and (ii) adding the number of request
arrivals for the current time period to the accumulator arrivals_total. In addi-
tion, the turn of the environment player finishes when this command is exe-
cuted, since it modifies the value of variable turn, yielding control to the system
player.

System. Module target_system (Listing 5) models the behavior of the target system
(including the execution of tactics upon it), and is parameterized by the constants:

• MIN_SERVERS and MAX_SERVERS, which specify the minimum and maxi-
mum number of active servers that a valid system configuration can have.

• INIT_SERVERS is the number of active servers that the system has in its initial
configuration.

35

• ENLIST_LATENCY is the latency of the tactic for enlisting a server, measured
in number of time periods (i.e., the real latency for the tactic in time units is
TAU * ENLIST_LATENCY). In our model, tactic latencies are always limited
to multiples of the time period duration.

• MAX_RT and INIT_RT, which specify the system’s maximum and initial re-
sponse times, respectively.

1 const MIN_SERVERS, MAX_SERVERS, INIT_SERVERS;
2 const ENLIST_LATENCY;
3 const MAX_RT, INIT_RT;
4
5 module target_system
6 s : [0..MAX_SERVERS] init INIT_SERVERS;
7 rt : [0..MAX_RT] init INIT_RT;
8 counter:[−1..ENLIST_LATENCY] init −1;
9 [] (s<=MAX_SERVERS) & (turn=SYS_TURN) & (counter!=0) −> (counter’=counter>0?counter−1:counter)

& (turn’=ENV_TURN) & (rt’=totalTime);
10 [enlist_trigger] (s<MAX_SERVERS) & (turn=SYS_TURN) & (counter=−1) −>

(counter’=ENLIST_LATENCY) & (turn’=ENV_TURN) & (rt’=totalTime);
11 [enlist] (s<MAX_SERVERS) & (turn=SYS_TURN) & (counter=0) −> 1: (s’=s+1) & (counter’=−1) &

(turn’=ENV_TURN) & (rt’=totalTime);
12 [discharge] (s>MIN_SERVERS) & (turn=SYS_TURN) & (counter!=0) −> (s’=s−1) &

(counter’=counter>0?counter−1:counter) & (turn’=ENV_TURN) & (rt’=totalTime) ;
13 endmodule

Listing 5: System module

Moreover, the module includes variables which are relevant to represent the cur-
rent state of the system:

• s corresponds to the number of active servers.
• rt is the system’s response time.
• counter is used to control the delay between the triggering of a tactic and the

moment in which it becomes effective in the target system. In this case, the
variable is used to control the delay between the activation of a server, and the
time instant in which it really becomes active.

During its turn, the system can decide not to execute any tactics, returning the turn
to the environment player by executing the command defined in line 9, Listing 5.
Alternatively, the system can execute one of these tactics:

• Activation of a server, which is carried out in two steps:

36

1. Triggering of activation through the execution of the command labeled
as enlist_trigger (line 10). This command only executes if the current
number of active servers has not reached the maximum allowed, and the
counter that controls tactic latency is inactive (meaning that there is not
currently a server already booting in the system). Upon execution, the
command activates the counter by setting it to the value of the latency
for the tactic, and returns the turn to the environment player.

2. Effective activation through the enlist command (line 11), which executes
when the counter that controls tactic latency reaches zero, incrementing
the number of servers in the system, and deactivating the counter. All the
commands in this module, except for the latter, decrement the value of the
counter 1 unit, if the counter is activated (counter’=counter>0?counter-
1:counter).

• Deactivation of a server, which is achieved through the discharge command (line
12), which decrements the number of active servers. The command fires only if
the current number of active servers is greater than the minimum allowed and
the counter for server activation is not active.

In addition, all the commands in this module update the value of the response time
according to the request arrivals during the current time period and the number of
active servers (computed using of an M/M/c queuing model [Chi99], encoded by
formula totalTime).
Utility profile Utility functions and preferences are encoded using formulas and
reward structures that enable the quantification of instantaneous utility. Specifi-
cally, formulas compute utility on the different dimensions of concern, and reward
structures weigh them against each other by using the utility preferences.

1 formula uR = (rt>=0 & rt<=100? 1:0)
2 +(rt>100&rt<=200?1+(−0.01)∗((rt−100)/(100)):0)
3 ...
4 +(rt>2000&rt<=4000?0.25+(−0.25)∗((rt−2000)/(2000)):0)
5 +(rt>4000 ? 0:0);
6 ...
7 rewards "rIU"
8 (turn=SYS_TURN) : TAU∗(0.6∗uR +0.4∗uC);
9 endrewards

Listing 6: Utility functions and reward structure

Listing 6 illustrates in lines 1-5 the encoding of utility functions using a formula
for linear interpolation based on the points defined for utility function UR in the first

37

column of Table 1. The formula in the example computes the utility for performance,
based on the value of the variable for system response time rt. Moreover, lines 7-9
show how a reward structure can be defined to compute a single utility value for
any state by using utility preferences. Specifically, each state in which it is the turn
of the system player to move is assigned with a reward corresponding to the entire
elapsed time period of duration TAU, during which we assume that instantaneous
utility does not change.

1 rewards "rEIU"
2 (turn=SYS_TURN) : TAU∗(0.6∗uER +0.4∗uC);
3 endrewards

Listing 7: Expected utility reward structure

In latency-aware adaptation, the instantaneous real utility extracted from the
system coincides with the utility expected by the algorithm’s computations during
the tactic latency period. However, in non-latency-aware adaptation, the instanta-
neous utility expected by the algorithm during the latency period for activating a
server does not match the real utility extracted for the system, since the new server
has not yet impacted the performance. To enable analysis of real vs. expected utility
in non-latency-aware adaptation, we add to the model a new reward structure that
encodes expected instantaneous utility rEIU (Listing 7). In this case, the utility for
performance during the latency period (encoded in formula uER) is computed anal-
ogously to uR in Listing 6, but based on the response time that the system would
have with s+1 servers during the latency period.

5.1.2 Analysis

In order to compare latency-aware vs. non-latency-aware adaptation, we make use
of rPATL specifications that enable us to analyze (i) the maximum utility that adap-
tation can guarantee, independently of the behavior of the environment (worst-case
scenario), and (ii) the maximum utility that adaptation is able to obtain under ideal
environmental conditions (best-case scenario).

5.1.3 Latency-aware Adaptation

Worst-case scenario analysis. We define the real guaranteed accrued utility (Urga)
as the maximum real instantaneous utility reward accumulated throughout execution

38

that the system player is able to guarantee, independently of the behavior of the
environment player:

Urga , 〈〈sys〉〉RrIU
max=?[Fc t = MAX_TIME]

This enables us to obtain the utility that an optimal self-adaptation algorithm
would be able to extract from the system, given the most adverse possible conditions
of the environment. Alternatively, Urga can also be obtained by computing a strategy
for the environment, based on the minimization of the same reward:

〈〈env〉〉RrIU
min=?[Fc t = MAX_TIME]

Best-case scenario analysis. To obtain the real maximum accrued utility achiev-
able (Urma), we specify a coalition of the system and environment players, which
behave cooperatively to maximize the utility reward:

Urma , 〈〈sys, env〉〉RrIU
max=?[Fc t = MAX_TIME]

5.1.4 Non-latency-aware Adaptation

In the case of non-latency-aware adaptation, the real utility does not coincide with
the expected utility that an arbitrary algorithm would employ for decision-making,
therefore we need to proceed with the analysis in two stages:

1. Compute the strategy that the adaptation algorithm would follow based on
the information it employs about expected utility. That strategy is computed
based on an rPATL specification that obtains the expected guaranteed accrued
utility (Uega) for the system player:

Uega , 〈〈sys〉〉RrEIU
max=?[Fc t = MAX_TIME]

For the specification of this property we employ the expected utility reward
rEIU (Listing 7) instead of the real utility reward rIU. Moreover, it is worth
observing that for latency-aware adaptation Uega = Urga.

2. Verify the specific property of interest (e.g., Urga, Urma) under the generated
strategy. We do this by using PRISM-games to build a product of the existing
game model and the strategy synthesized in the previous step, obtaining a new
game under which further properties can be verified. In our case, once we have
computed a strategy for the system player to maximize expected utility, we
quantify the reward for real utility in the new game in which the system player
strategy has already been fixed.

39

Table 8: SMG model checking results for Znn
MAX_TIME Latency Latency-Aware Non-Latency-Aware ∆Urga ∆Urma

(s) (s) Uega Urga ∆Uer(%) Urma Uega Urga ∆Uer(%) Urma (%) (%)
TAU 53.77 53.77 0 99.6 65.97 48.12 -27.05 79.99 10.5 19.68

100 2*TAU 49.35 49.35 0 99.6 64.3 42.1 -34.5 78.39 14.69 21.29
3* TAU 45.6 45.6 0 99.6 64.3 33.25 -48.2 78.39 27 21.29

TAU 110.02 110.02 0 199.6 127.25 95.9 -24.63 156.79 12.83 21.44
200 2*TAU 105.6 105.6 0 199.6 125.57 76.6 -38.99 155.19 27.46 22.24

3* TAU 101.17 101.17 0 199.6 123.9 66.15 -46.6 153.59 34.61 23.05

5.1.5 Results

Table 8 compares the results for the utility extracted from the system by a latency-
aware vs. a non-latency-aware version of the system player, for two different models
of Znn that represent an execution of the system during 100 and 200s, respectively.
The models consider a pool of up to 4 servers, out of which 2 are initially active. The
period duration TAU is set to 10s, and for each version of the model, we compute
the results for three variants with different latencies for the activation of servers of
up to 3*TAU s. The maximum number of arrivals that the environment can place
per time period is 20, whereas the time it takes the system to service every request
is 1s.

We define the delta between the expected and the real guaranteed utility as:
∆Uer = (1− Uega

Urga
)× 100

Moreover, we define the delta in real guaranteed utility between latency-aware
an non-latency aware adaptation as:

∆Urga = (1− Un
rga

U l
rga

)× 100,
where Un

rga and U l
rga designate the real guaranteed accrued utility for non-latency-

aware and latency-aware adaptation, respectively. The delta in real maximum ac-
crued utility (∆Urma) is computed analogously to ∆Urga.

Table 8 shows that latency-aware adaptation outperforms in all cases its non-
latency-aware counterpart. In the worst-case scenario, latency-aware adaptation is
able to guarantee an increment in utility extracted from the system, independently of
the behavior of the environment (∆Urga) that ranges between approximately 10 and
34%, increasing progressively with higher tactic latencies. In the best-case scenario
(cooperative environment), the maximum utility that latency-aware adaptation can
achieve does not experience noticeable variation with latency, staying in the range
19-23% in all cases. Regarding the delta between expected and real utility that
adaptation can guarantee, we can observe that ∆Uer is always zero in the case of
latency-aware adaptation, since expected and real utilities always have the same

40

value, whereas in the case of non-latency-aware adaptation there is a remarkable
decrement that ranges between 24 and 48%, also progressively increasing with higher
tactic latency.

5.2 Stochastic Game Analysis for Moving Target
Probabilistic model checking of SMGs can be a powerful tool applied in the context
of Moving Target. In this context, the interplay between a defending system im-
plementing MTD, and a potentially hostile environment including attackers can be
modeled as competing players in a zero-sum SMG.
Specifically, we propose a two-stage approach to analyzing and synthesizing attack-
er/defender strategies in MTD:

Model Construction. Consists in setting up a SMG model following the pattern:

• Π = {sys, env} is the set of players formed by the self-adaptive system and its
environment. Where:

– The set of actions available to the system correspond to the set of available
MT tactics (e.g., variant switching, or ASLR).

– The set of actions available to the environment includes the different tac-
tics that an attacker might utilize to compromise the system (e.g., probing,
or SQL injection).

• r is a reward structure labeling game states with their associated utility, com-
puted based on the preferences defined in the utility profile. Specifically, the
reward of an arbitrary state s can be defined as:

r(s) =
q∑
i=1

wi · ui(vsi)

where ui is the utility function for quality dimension i ∈ {1, . . . , q}, wi ∈ [0, 1]
is the weight assigned to the utility of dimension i , and vsi denotes the value
that the state variable associated to quality attribute i takes in state s.

We can use this technique to implement different SMG model variants of MTD
used in different contexts, in order to compare their effectiveness:

41

• Uninformed-Proactive. The defending system adapts proactively based on an
internal model of the environment (i.e., it does not factor in sensed informa-
tion from the environment in decision making regarding when or which tactics
should be carried out).

• Predictive-Proactive. The system adapts proactively, but factoring in sensed
information from the environment, as well as predictions about the environ-
ment’s future behavior (e.g., trend analysis, or seasonal information).

• Reactive. The defending system adapts reactively, executing tactics based on
information sensed from the environment (e.g., after a number of probing events
that raises the amount of information that a potential attacker might have
available, thereby increasing its chances of carrying out a successful attack).

Analysis and Strategy Synthesis. Basing upon a specific SMGmodel, we propose
generating strategies for player sys that have the objective of maximizing the value
of reward r (e.g., utility). The specification for the synthesis of such strategy is given
as a rPATL property following the pattern:

〈〈sys〉〉Rrmax=?[Fc ω]
The formula above enables the quantification of the maximum accumulated utility

reward r along paths that lead to states satisfying an end condition ω that can
be guaranteed by the system player, independently of the strategy followed by the
environment player.

Although indeed, analyzing the game in terms of utility rewards enables tradeoff
analysis among security and other qualities of concern, SMG analysis and strategy
synthesis can provide further insight about other aspects concerning the effectiveness
of a given defensive strategy, such as:

• Probability that the attacker has of successfully compromising the defending
system. Given a set of tactics and an MTD variant, we can quantify the
maximum probability of compromising the system that the attacker would be
able to achieve in the presence of an optimal defensive strategy. This can be
formalized in a rPATL property of the form:

〈〈env〉〉Pmax=?[F ω]

where ω is a state formula satisfied whenever the system is compromised. Al-
ternatively, we can quantify the same probability from the perspective of the
system, trying to minimize it:

42

〈〈sys〉〉Pmin=?[F ω]

The property above would quantify the lowest probability that the system can
guarantee of being compromised, independently of the strategy followed by a
potential attacker in the environment.

• Lifespan of the defending system in the presence of an attack. Based on the
definition of a time reward in the SMG model, rPATL reward-based properties
also enable us to quantify the longest time period during which the system can
guarantee to remain uncompromised in the face of an attack:

〈〈sys〉〉Rtumax=?[Fc ω]

In the property above, tu is a reward structure assigning a fixed reward to
states in the SMG model in which the system remains uncompromised.

5.2.1 SMG Model

Our formal model for analyzing MTD is implemented in PRISM-games [C+13b], an
extension of the probabilistic model-checker PRISM [K+11] for modeling and ana-
lyzing SMGs. The game is played in turns by three players that are in control of the
behavior of the environment, the defending system, and an attacker, respectively. 7

In this game, the attacker’s goal is compromising the defending system by carrying
out an attack on it. The probability of success of the attack is directly proportional
to the amount of information that the attacker has successfully gathered about the
system through subsequent probing attempts.

On the contrary, the goal of the defending system is thwarting the attacks by
adapting the system. In our model, the behavior of the system includes a single,
abstract adaptation tactic that has the effect of invalidating the information that
the attacker had collected about the system up to the point in which the system
adapts.

Probing, attacking, and adapting are actions that incur in costs in terms of
consumed resources, both on the attacker and the defending system’s side.

Finally, the environment in this case is a neutral player which acts as a mediator
between the system and the attacker, updating environmental variables based on the
actions of the other players (e.g., updating the amount of available information to the
attacker player after a probing event, according to the probe’s success probability).
The SMG model consists of the following parts:

7Attacker and Environment can be implemented together, but in this case the model separates
them explicitly for clarity.

43

Player definition. Listing 8 illustrates the definition of the players in the stochastic
game: player env is in control of all the (asynchronous) actions that the environment
can take (as defined in the Environment module, Listing 11). Player att controls all
the actions of the attacker implemented in the Attacker module (Listing 10). Player
sys controls all transitions that belong to the System module (Listing 9).8 Global
variable turn in line 7 is used to make players alternate, ensuring that for every state
of the model, only one player can take action.

1 player sys System, [adapt] endplayer
2 player att Attacker, [probe], [attack] endplayer
3 player env Environment endplayer
4
5 const TS=1; const TA=2; const TE=3;
6
7 global turn:[TS..TE] init TE;

Listing 8: Player definition for MTD’s SMG.

System. Module System (Listing 9) models the behavior of the defending system,
and is parameterized by the constants:

• MAX_SYSTEM_RES. Sets the maximum amount of available system resources.
• ADAPTATION_COST. Determines the amount of resources consumed each time

the system adapts.
• ADAPTATION_EFFECTIVENESS. Determines how effective adaptation is at

invalidating the information that the attacker had already gathered about the
system.

Moreover, for the reactive version of the defending system, the following addi-
tional constants parameterize its behavior.

• MAX_THREAT_LEVEL. Sets the maximum level of threat as perceived by the
defending system.

• THREAT_SENSITIVITY. Determines the level of reactiveness of the defend-
ing system regarding threat detection (e.g., it is the minimum threshold in
perceived threat level required to adapt, where threat level is increased by
external events such as attacks or probes).

1 const MAX_SYSTEM_RES; // Maximum of system resources
2 const ADAPTATION_COST; // Cost of adapting the system

8Actions adapt, probe, and attack are explicitly labeled to improve readability (see Listings 9
and 10), but are still asynchronous in our model.

44

3 const double ADAPTATION_EFFECTIVENESS; // How effective is adaptation at invalidating attacker’s information
4
5 const MAX_THREAT_LEVEL;
6 const double THREAT_SENSITIVITY; // Level of sensitivity of the system regarding reaction to external probing and

attacks (0 fully eliminates reactiveness)
7
8 global compromised : bool init false; // Did the attack succeed?
9 global threat_level:[0..MAX_THREAT_LEVEL] init 0;

10
11 formula ADAPT_PERIOD=ceil(MAX_TIME/(MAX_SYSTEM_RES/ADAPTATION_COST)); // Time period

duration between adaptations (for UNINFORMED_PROACTIVE variant, set to 0 for other variants)
12 formula can_adapt=(t>0 & mod(t,ADAPT_PERIOD)=0)|VARIANT!=UNINFORMED_PROACTIVE?true:false;
13
14 module System
15 system_res:[0..MAX_SYSTEM_RES] init MAX_SYSTEM_RES;
16
17 [] (turn=TS) & (t<MAX_TIME) −> (turn’=TA);
18 [adapt] (turn=TS) & (t<MAX_TIME) & (system_res>=ADAPTATION_COST) & (threat_level>

THREAT_SENSITIVITY) & (can_adapt) −> (turn’=TA) & (system_res’=system_res−ADAPTATION_COST
) & (attacker_info’=floor(attacker_info∗(1−ADAPTATION_EFFECTIVENESS))) & (threat_level’=floor(
threat_level∗(1−ADAPTATION_EFFECTIVENESS)));

19
20 endmodule

Listing 9: System module.

Moreover, the module includes variables which are relevant to represent the cur-
rent state of the system:

• compromised. Is a boolean variable that indicates whether the system has been
compromised as the result of an attack.

• threat_level. Keeps track of the threat level perceived by the defending system
(reactive variant).

• system_res. Keeps track of the amount of available system resources.

During its turn, the system can:

• Return the turn to the attacker player without executing any actions (encoded
in the command on line 17, Listing 9).

• Adapt, resulting in the (partial) invalidation of the information collected by
the attacker (line 18). The adaptation command can only be executed if the
different conditions encoded in its guard are satisfied:

– There must be enough available system resources to carry out the adap-
tation.

45

– The perceived threat level must be above the threshold (THREAT_SENSI-
TIVITY). This is used only in the reactive variant of the model (the value
of the threshold is always set to zero in proactive variants).

– The system should be able to adapt in the current time point. This is
used only for the uninformed proactive variant of the model, in which the
formula can_adapt is only satisfied only at fixed adaptation points in time.
The encoding of the formula can_adapt in Listing 9, line 12 shows how
can_adapt is always true if we are not in the uninformed proactive variant,
or else is only satisfied in time instants multiple of ADAPT_PERIOD.

Once the adaptation commands executes, it carries out a reduction in the
amount of information collected by the attacker directly proportional to the
value set in the parameter ADAPTATION_EFFECTIVENESS. In the reactive
version of the system, the level of perceived threat is also reduced in the same
proportion.

Attacker. Listing 10 illustrates the encoding for the attacker. Its behavior is pa-
rameterized by the following constants:

• MAX_ATTACKER_RES is the maximum amount of resources available to the
attacker.

• PROBE_COST is the amount of resources consumed when probing the system.
• ATTACK_COST is the amount of resources consumed when attacking the sys-

tem.
• PROBE_THREAT_DELTA is the increment in perceived threat level caused by

a probe on the system.
• ATTACK_THREAT_DELTA is the increment in perceived threat level caused

by an attack on the system.
• MAX_INFO is the maximum amount of information that the system can collect

about the system.
• PROBE_INFO_GAIN is the amount of information obtained from successfully

probing the system.
• P_PROBE_SUCCESS is the probability that a probe on the system will suc-

cessfully obtain useful information for the attacker.

1 const MAX_ATTACKER_RES; // Maximum available attacker resources
2 const PROBE_COST; // Cost of probing the system
3 const ATTACK_COST; // Cost of attacking the system
4

46

5 const ATTACK_THREAT_DELTA; // How much do probes and attacks increment the threat level perceived by the
system (add probabilities?)

6 const PROBE_THREAT_DELTA;
7
8 const MAX_INFO; // Maximum information level of information that can be collected about the system
9 const PROBE_INFO_GAIN; // Information gain obtained from a probe

10
11 const double P_PROBE_SUCCESS; // Probability of probe being successful (i.e., of collecting information)
12 formula P_ATTACK_SUCCESS=attacker_info/MAX_INFO; // Probability of attack success (depends on the level of

information successfully gathered by the attacker)
13
14 global probe : bool init false;
15 global attack : bool init false;
16
17 global attacker_info:[0..MAX_INFO] init 0;
18
19 module Attacker
20 attacker_res:[0..MAX_ATTACKER_RES] init MAX_ATTACKER_RES;
21
22 [] (turn=TA) & (t<MAX_TIME) −> (turn’=TE);
23 [probe] (turn=TA) & (t<MAX_TIME) & (!compromised) & (attacker_res>=PROBE_COST) & (attacker_info<=

MAX_INFO−PROBE_INFO_GAIN) −> (turn’=TE) & (probe’=true) & (attacker_res’=attacker_res−
PROBE_COST);

24 [attack] (turn=TA) & (t<MAX_TIME) & (!compromised) & (attacker_res>=ATTACK_COST) −>(turn’=TE) & (
attack’=true) & (attacker_res’=attacker_res−ATTACK_COST);

25
26 endmodule

Listing 10: Attacker module.

The attacker makes use of the following variables:

• probe and attack are indicate whenever the attacker decides to execute a probe
or and attack, respectively.

• attacker_res keeps track of the available attacker resources.

During its turn, the attacker can either:

• Do no action and pass the turn on to the environment player (line 22).
• Probe the system, setting variable probe to true if there are enough resources

available for it and the amount of collected information about the system has
not reached its maximum limit (line 23).

• Attack the system, setting variable attack to true if there are enough resources
to carry out an attack (line 24).

Environment. Listing 11 shows the encoding of the Environment process, which
acts as a neutral mediator between the system and the attacker. The environment
is parameterized by the constant MAX_TIME (line 0), which determines the time

47

frame of the scenario considered for the analysis of the game ([0,MAX_TIME]). To
keep track of time during the game, the environment makes use of variable t (line 7).

1 const MAX_TIME;
2
3 formula update_threat_level_probe=(threat_level+PROBE_THREAT_DELTA>MAX_THREAT_LEVEL?

MAX_THREAT_LEVEL:threat_level+PROBE_THREAT_DELTA);
4 formula update_threat_level_attack=(threat_level+ATTACK_THREAT_DELTA>MAX_THREAT_LEVEL?

MAX_THREAT_LEVEL:threat_level+ATTACK_THREAT_DELTA);
5
6 module Environment
7 t:[0..MAX_TIME] init 0;// Keeps track of time
8
9 // No action

10 [] (turn=TE) & (t<MAX_TIME) & (!attack) & (!probe) −> (turn’=TS) & (t’=t+1);
11
12 // Is there an ongoing probe?
13 [] (turn=TE) & (t<MAX_TIME) & (probe) −>
14 P_PROBE_SUCCESS: (turn’=TS) & (t’=t+1) & (probe’=false) & (attacker_info’=attacker_info+

PROBE_INFO_GAIN) & (threat_level’=update_threat_level_probe) // Probe succeeded
15 + 1−P_PROBE_SUCCESS: (turn’=TS) & (t’=t+1) & (probe’=false) & (threat_level’=

update_threat_level_probe); // Probe failed
16
17 // Is there an ongoing attack?
18 [] (turn=TE) & (t<MAX_TIME) & (attack) −>
19 P_ATTACK_SUCCESS: (turn’=TS) & (t’=t+1) & (attack’=false) & (compromised’=true) & (

threat_level’=update_threat_level_attack) // Attack succeeded
20 + 1−P_ATTACK_SUCCESS: (turn’=TS) & (t’=t+1) & (attack’=false) & (threat_level’=

update_threat_level_attack); // Attack failed
21
22 endmodule

Listing 11: Environment module.

During its turn, the environment can:

• Do nothing if the attacker did not carry out an attack or a probe during its
turn, yielding the turn to the system player (line 10).

• If the attacker probed the system during its turn (line 13), the environment
includes two probabilistic outcomes for the probe:
– The probe succeeds with probability P_PROBE_SUCCESS, incrementing

the amount of information available to the attacker, as well as the threat
level perceived by the system (line 14).

– The probe fails with probability 1-P_PROBE_SUCCESS, incrementing
only the threat level variable (line 15).

• If the attacker carried out an attack on the system during its turn (line 18),
the two probabilistic outcomes are:

48

– The attack succeeds with probability P_ATTACK_SUCCESS, setting the
value of variable compromised to true.

– The attack fails with probability 1-P_ATTACK_SUCCESS, raising the
value of the threat level perceived by the system.

5.2.2 Results

To compare the different variants of MTD, we carried out a set of experiments in
which we model checked the minimum probability of compromising the system that
each of the defense variants could guarantee, independently of the strategy followed
by the attacker. This corresponds to quantifying the rPATL property:

PComp , 〈〈sys〉〉Pmin=?[F compromised]
Alternatively, PComp can be computed as the maximum probability of compro-

mising the system that the attacker can guarantee, independently of the strategy of
the defending system:

PComp , 〈〈att〉〉Pmax=?[F compromised]
We instanced all the variants of the model described in Section 5.2.1 with the set

of parameters values displayed in Table 5.2.2, exploring how PComp evolved through-
out the range of values [5, 50] for available system resources, with the rest of the
parameter values fixed.

System Attacker Environment
MAX_SYSTEM_RES [5,50] MAX_ATTACKER_RES 5 MAX_TIME 50
ADAPTATION_COST 1 PROBE_COST 0

ADAPTATION_EFFECTIVENESS 1 ATTACK_COST 1
MAX_THREAT_LEVEL 5 ATTACK_THREAT_DELTA 2

PROBE_THREAT_DELTA 1
MAX_INFO 10

PROBE_INFO_GAIN 1
P_PROBE_SUCCESS 0.8

Table 9: General parameter values for model instantiation.

Experiments were carried out by using PRISM-games beta r5753 64-bit on a machine
running OS X 10.9.1, with an Intel Core 2 Duo processor and 4GB of RAM.
Specifically, we carried out two experiments:
Comparison of uninformed vs. predictive variants of proactive adaptation.
Figure 6 shows a comparison of the maximum probability that the attacker has of
compromising the system for the uninformed and predictive variants that implement

49

proactive MTD. The uninformed variant adapts with a the maximum possible fre-
quency in time allowed by the available amount of resources to the system (e.g., if
the amount of available resources is 5, and the time frame defined for the game is
50, the system will adapt each 10 time units, as defined in Listing 9, line 11). One
of the first things that can be observed is that given the same amount of system
resources, the predictive variant always perform better than uninformed adaptation.
Moreover, while the predictive variant progressively and smoothly reduces the prob-
ability of the attacker compromising the system, the uninformed one is more uneven,
presenting different intervals during which the addition of system resources does not
make any difference concerning the probability of the system being compromised
(e.g., the probability does not change for the uninformed variant during the interval
[25, 49]).

Figure 6: Probability of compromising the system in proactive adaptation: unin-
formed vs. predictive.

Figure 7: Probability of compromising the system in proactive vs. reactive adapta-
tion.

50

Comparison of predictive proactive adaptation vs. reactive adaptation.
Figure 7 shows PComp for the uninformed predictive variant of MTD, comparing
it with reactive adaptation that have different levels of threat sensitivity. As ex-
pected, predictive proactive adaptation always performs better than the different
reactive variants, since the solution space of reactive adaptation is always a sub-
set of the solutions available to predictive proactive adaptation. In particular, it
can be observed how increasing levels of sensitivity (i.e., lower values of threshold
THREAT_SENSITIVITY) yield increasingly better results.

6 Conclusions
Architecture-based self-adaptation has shown results in adapting systems to manage
quality attributes such as performance, reacting to changes in the environment and
choosing adaptations based on multiple business objectives to maintain the system at
a high level of utility. Some results have shown promise in reasoning about security
adaptations in general. Moving target defenses do not necessarily react to changes in
the environment, but instead try to shift various aspects of the system anticipating
that an attack may occur and making attacks more difficult. In this report, we
reported on our initial explorations in applying architecture-based self-adaptation to
moving target defenses, resulting in the following benefits:

1. Being able to cast MTD at the architectural level enables analysis of the im-
pacts of the defenses on other, non-security related, qualities of the system.
This allows reasoning using utility theory, and selecting defenses that balance
the impact of those defenses with other aspects of the system.

2. Predicitive techniques that use knowledge of the near-term states of the self-
adaptive system to improve selection of adaptations based on accrued utility
rather than instantaneous utility, meaning that reasoning happens over longer
time periods.

3. Using Stochastic Multi-player Games (SMGs) to model the environment as well
as the self-adaptive system, providing a framework for generating appropriate
defense strategies based on formal models. In this report, we were able to
use this modeling framework to verify that proactive moving target techniques
indeed make it more difficult for attackers to be successful.

In this report we described three initial forays to investigate these areas. However,
future work is needed along the following paths:

51

1. Developing a more comprehensive catalog of MTD tactics that can be applied
at the architectural level is needed, along with guidance on the their impact
on different qualities of the system.

2. Developing a more comprehensive set of security measures that can be used in
utility theory to reason about how to choose the tactics. In this report, we used
a subset of security indicators reported in [RS12] to show how this might work,
but verifying this and determining other measures that might be appropriate
for moving target is future work.

3. Verifying that the calculus for incorporating different predictions does apply for
MTD, and using it to further the horizon from new- to long-term. Pushing the
prediction horizon further out will allow better planning of when to perform
adaptation. For example, planning to use times when the system is idle to
generate new variants will make the system resilient to attack in periods of
heavy use.

4. Using prediction in other aspects of self-adaptation. For example, it could be
used to proactively place probes in anticipation of an attack to better moni-
tor attack vectors, or used to selectively monitor particular employees to de-
tect insider threat. Predictions about success of an attacks could be factored
into selecting changes. Additionally, information about the threat environment
from other similar systems could be used to proactively prepare a system for
anticipated attacks.

5. More nuanced models in the game model of MTD that consider uncertainty of
environment information and do not assume perfect knowledge, so that they
better reflect the real world. For example, for predictive proactive adaptation,
how does the strategy for defense change with an increase in uncertainty in
being able to detect probing?

One aspect of self-adaptive systems that needs to be better understood generally
is the impact of time on the choice of strategy. Currently, systems do not consider how
long a strategy will take to execute in deciding whether it will be done. Therefore,
a slow but high impact strategy will always be chosen over a fast but less impactful
strategy. For security generally, and MTD in particular, timing is often crucial
in deciding what to do. We need to extend the notion of time described in this
report for predicting and making decisions about based on near-term state to better
understand the impact of time on the system utility. Incorporating this notion of
time may help us to choose fast adaptations while also starting slower adaptations
to get fast response but eventual maximum impact.

52

References
[A+02] Rajeev Alur et al. Alternating-time temporal logic. J. ACM, 49(5), 2002.

[AB12] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 2012.

[BdA95] Andrea Bianco and Luca de Alfaro. Model checking of probabalistic and
nondeterministic systems. In FSTTCS, volume 1026 of LNCS. Springer,
1995.

[BKLW95] Mario R. Barbacci, Mark H. Klein, Thomas A. Longstaff, and Charles B.
Weinstock. Quality attributes. Technical Report CMU/SEI-95-TR-021,
Software Engineering Institute, Carnegie Mellon University, 1995.

[BZ06] Emery D Berger and Benjamin G Zorn. Diehard: probabilistic memory
safety for unsafe languages. ACM SIGPLAN Notices, 41(6):158–168,
2006.

[C+13a] T. Chen et al. Automatic verification of competitive stochastic systems.
Form Method Syst Des, 43(1), 2013.

[C+13b] T. Chen et al. PRISM-games: A model checker for stochastic multi-
player games. In Proc. of TACAS’13, volume 7795 of LNCS. Springer,
2013.

[CCdL+13] Javier Cámara, Pedro Correia, Rogério de Lemos, David Garlan, Pedro
Gomes, Bradley Schmerl, and Rafael Ventura. Evolving an adaptive
industrial software system to use architecture-based self-adaptation. In
Proceedings of the 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, 20-21 May 2013.

[CF11] Michael B. Crousse and Errin W. Fulp. A moving target environment for
computer configurations using genetic algorithms. In Proceedings of the
4th Symposium on Configuration Analytics and Automation (SafeConfig
2011), 2011.

[CG12a] Shang-Wen Cheng and David Garlan. Stitch: A language for
architecture-based self-adaptation. Journal of Systems and Software,
Special Issue on State of the Art in Self-Adaptive Systems, 85(12), De-
cember 2012.

53

[CG12b] Richard Colbaugh and Kristin Glass. Predictability-oriented defense
against adaptive adversaries. In 2012 IEEE International Conference
on Systems, Man, and Cybernetics, October 2012.

[CG13] R. Colbaugh and K. Glass. Moving target defense for adaptive adver-
saries. In Intelligence and Security Informatics (ISI), 2013 IEEE Inter-
national Conference on, pages 50–55, June 2013.

[CGS06] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-
based self-adaptation in the presence of multiple objectives. In ICSE
2006 Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Shanghai, China, 21-22 May 2006.

[Che08] Shang-Wen Cheng. Rainbow: Cost-Effective Software Architecture-Based
Self-Adaptation. PhD thesis, Carnegie Mellon University, May 2008.
Institute for Software Research Technical Report CMU-ISR-08-113.

[Chi99] R.M. Chiulli. Quantitative Analysis: An Introduction. Automation and
production systems. Taylor & Francis, 1999.

[CL07] Taolue Chen and Jian Lu. Probabilistic alternating-time temporal logic
and model checking algorithm. In FSKD, volume 2, 2007.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, August 1975.

[DvdHT02] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. Towards
architecture-based self-healing systems. In Proceedings of the First Work-
shop on Self-healing Systems, WOSS ’02, pages 21–26, New York, NY,
USA, 2002. ACM.

[F+11] V. Forejt et al. Automated verification techniques for probabilistic sys-
tems. In SFM, volume 6659 of LNCS. Springer, 2011.

[FBY08] D.S. Fava, S.R. Byers, and S.J. Yang. Projecting cyberattacks through
variable-length markov models. Information Forensics and Security,
IEEE Transactions on, 3(3):359–369, Sept 2008.

[G+11] D. Gross et al. Fundamentals of Queueing Theory. Wiley Series in
Probability and Statistics. Wiley, 2011.

54

[GCH+04] D. Garlan, Shang-Wen Cheng, An-Cheng Huang, B. Schmerl, and
P. Steenkiste. Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10):46–54, 2004.

[HW03] Wiebe Van Der Hoek and Michael Wooldridge. Model checking cooper-
ation, knowledge, and time - a case study. In Research in Economics,
2003.

[Jan09] Wayne Jansen. Directions in security metrics research. Technical Report
NISTIR 7564, National Institutes of Standards and Technology, U.S.
Department of Commerce, 2009.

[K+11] M. Kwiatkowska et al. PRISM 4.0: Verification of probabilistic real-time
systems. In CAV, volume 6806 of LNCS. Springer, 2011.

[KC03] J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[KR01] Steve Kremer and Jean-Francois Raskin. A game-based verification of
non-repudiation and fair exchange protocols. In CONCUR 2001, volume
2154 of LNCS. Springer, 2001.

[LFW13] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Moving target
defenses in the helix self-regenerative architecture. In Moving Target
Defense II, Advances in Information Security, volume 100, pages 117–
149. Springer, 2013.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Spec-
ifying distributed software architectures. In Wilhelm Schäfer and Pere
Botella, editors, Software Engineering — ESEC ’95, volume 989 of Lec-
ture Notes in Computer Science, pages 137–153. Springer Berlin Heidel-
berg, 1995.

[Nor68] D.W. North. A tutorial introduction to decision theory. Systems Science
and Cybernetics, IEEE Transactions on, 4(3):200–210, 1968.

[OGT+99] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. Johnson,
N. Medvidovic, A. Quilici, D.S. Rosenblum, and A.L. Wolf. An
architecture-based approach to self-adaptive software. Intelligent Sys-
tems and their Applications, IEEE, 14(3):54–62, 1999.

55

[ORM+13] H. Okhravi, M.A. Rabe, T.J. Mayberry, W.G. Leonard, T.R. Hobson,
D. Bigelow, and W.W. Streilein. Survey of cyber moving target tech-
niques. Technical Report 1166, Lincoln Laboratory, Massachusetts In-
stitute of Technology, 2013.

[P+07] Vahe Poladian et al. Leveraging resource prediction for anticipatory
dynamic configuration. In SASO, 2007.

[RS12] Manuel Rudolph and Reinhard Schwartz. A critical survey of security in-
dicator approaches. In 2012 Seventh International Conference on Avail-
ability, Reliability and Security, 2012.

[SCG+14] Bradley Schmerl, Javier Camara, Jeffrey Gennari, David Garlan, Paulo
Casanova, Gabriel A. Moreno, Thomas J. Glazier, and Jeffrey M. Barnes.
Architecture-Based Self-Protection: Composing and Reasoning about
Denial-of-Service Mitigations. In Symposium and Bootcamp on the Sci-
ence of Security (HotSoS), Raleigh, USA, 8-9 April 2014.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, April 1996.

[VH08] András Varga and Rudolf Hornig. An overview of the OMNeT++ sim-
ulation environment. In Simutools. ICST, 2008.

[YEM14] Eric Yuan, Naeem Esfahani, and Sam Malek. A systematic survey of
self-protecting software systems. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 8(4):17, 2014.

[YMS+13] Eric Yuan, Sam Malek, Bradley Schmerl, David Garlan, and Jeffrey Gen-
nari. Architecture-based self-protecting software systems. In Proceedings
of the Ninth International ACM Sigsoft Conference on the Quality of
Software Architectures (QoSA 2013), 17-21 June 2013.

56

Algorithm 1 Latency-aware proactive adaptation
1: for all i ∈ [1 . . . |C|] do
2: ui,H ← τU(Ci, env(τH))
3: ni,H ← 0 // no next state
4: end for
5: for t = H − 1 downto 0 do
6: for all i ∈ [1 . . . |C|] do
7: ui,t ← −∞ // assume infeasible configuration
8: ni,t ← 0
9: if servers(Ci) ≤ servers(sys(tτ)) ∨ λ ≤ tτ then
10: ulocal ← τU(Ci, env(tτ))
11: // find the next best configuration after i
12: for all j ∈ [1 . . . |C|] do
13: if uj,t+1 > −∞ then
14: if tτ < λ then
15: start← max(servers(Ci), servers(sys((t+ 1)τ)))
16: else
17: start← servers(Ci)
18: end if
19: cost← max(0, λ∆Uc(start, servers(Cj))
20: uprojected ← uj,t+1 + ulocal − cost
21: if uprojected > ui,t then
22: ui,t ← uprojected
23: ni,t ← j
24: end if
25: end if
26: end for
27: end if
28: end for
29: end for
30: best← arg maxi ui,0 // best starting configuration
31: // find if there is a config with more servers that must be started now
32: i← best
33: t← 0
34: while t < H ∧ (t+ 1)τ ≤ λ do
35: i← ni,t
36: if servers(Ci) > servers(Cbest) then
37: best← i
38: end if
39: t← t+ 1
40: end while
41: return servers(Cbest)− totalServers(sys(0))

57

List of Figures
1 The Rainbow Framework . 5
2 Architecture of the Znn web system used for evaluation. 7
3 Calculation for aggregate impact of strategy Challenge 14
4 Reactive (top) vs. proactive (bottom) self-adaptation 20
5 NLA (top) vs. LA (bottom) self-adaptation 27
6 Probability of compromising the system in proactive adaptation: un-

informed vs. predictive. 50
7 Probability of compromising the system in proactive vs. reactive adap-

tation. 50

58

List of Tables
1 Utility functions for DoS scenarios . 12
2 Utility preferences for DoS scenarios 12
3 Tactic cost/benefit on qualities and impact on utility dimensions . . . 13
4 A summary of various MTD tactics and their impacts on security and

other quality measures. 18
6 Simulation results for Znn: accrued utility 28
7 Simulation results for Znn: LA and NLA comparison 28
8 SMG model checking results for Znn 40
9 General parameter values for model instantiation. 49

59

